
PDE Introductory Exercises and Solutions
Chapter 5, Hyperbolic Equations

Posted on yxy.ac

Revised June 2024, Version 1

Contents

1 Derive the wave equation for a string that moves in a medium. . . 2

2 Solve the following initial-boundary value problems for the wave equa-
tion. 2
2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Solve the Cauchy problem. 5

4 Solve the Cauchy problem. 6

5 Let u be a solution of the wave equation. . . Is it possible that u(x, 1) is
smoother than u(x, 0)? Is it possible to have a maximum principle for
the wave equation? 8

6 Let u be the solution of. . . Show that if both ϕ and ψ are even functions,
then so is u in x. Formulate and prove the analog when both ϕ and ψ
are odd. 9
6.1 For Even Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.2 For Odd Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 9

7 (Principle of causality) Let u be a smooth solution of the wave equation
utt = uxx, x ∈ R, t ≥ 0. Prove that. . . 10

1 / 10

https://yxy.ac/post/10005


1 Derive the wave equation for a string that moves
in a medium. . .

Derive the wave equation for a string that moves in a medium in which the resistance
force between the string and the medium is proportional to the velocity of the string.

Solution. Since the resistance force between the string and the medium is proportional
to the velocity of the string, take the resistance on a unit length of string as R = −βut
where β is the positive damping coefficient.

Applying the string micro-piece model with the tension T (t) of the string and the
external force F (x, t) exerted on the string
ˆ x2

x1

ρ(x)utt(x, t)dx =

ˆ x2

x1

∂ (T (t)ux(x, t))

∂x
dx+

ˆ x2

x1

−βut(x, t)dx+
ˆ x2

x1

F (x, t)dx.

It is not hard to deduce the equation

ρ(x)utt(x, t) = T (t)uxx(x, t)− βut(x, t) + F (x, t),

then, dividing by given constant ρ(x) as density distribution of the string, we have

utt = a2uxx − but + f(x, t), x ∈ (0, l), t ∈ (−∞,+∞)

where b = β/ρ(x), a2 = T (t)/ρ(x) and f(x, t) = F (x, t)/ρ(x).

2 Solve the following initial-boundary value prob-
lems for the wave equation.

(1) 
utt − 4uxx = 0, x ∈ (0, 1), t ∈ R,
u(0, t) = 0 = u(1, t), t ∈ R,
u(x, 0) = sin(πx), ut(x, 0) = sin(4πx), x ∈ (0, 1).

Solution. Assume u(x, t) = X(x)T (t),

X ′′

X
=
T ′′

4T
= −λ.

The corresponding eigenvalue problem of X is{
X ′′(x) + λX(x) = 0

X(0) = 0, x(1) = 0

then the eigenvalue and eigenfunction are given by

λn = n2π2, n = 1, 2, · · · ,

Xn(x) = sin(nπx), n = 1, 2, · · · .
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The corresponding ODE of T is T ′′
n (t) + 4λnTn(t) = 0 and the general solution is given

by
Tn(t) = an cos(2nπt) + bn sin(2nπt), n = 1, 2, · · · .

By the initial condition u(x, 0) = sin(πx) and Tn(0) = an,

sin(πx) =
∞∑
n=1

Xn(x)Tn(0) =
∞∑
n=1

sin(nπx) · an ⇒ a1 = 1, an≥2 = 0,

and by the initial condition ut(x, 0) = sin(4πx) and T ′
n(0) = 2nπbn,

sin(4πx) =
∞∑
n=1

Xn(x)T
′
n(0) =

∞∑
n=1

sin(nπx) · 2nπbn ⇒ b4 =
1

8π
, bn ̸=4 = 0.

Thus,
u(x, t) = cos(2πt) sin(πx) + 1

8π
sin(8πt) sin(4πx).

(2) 
utt − a2uxx = 0, x ∈ (0, 1), t ∈ R,
ux(0, t) = 0 = ux(1, t), t ∈ R,
u(x, 0) = x, ut(x, 0) = 0, x ∈ (0, 1).

Solution. Assume u(x, t) = X(x)T (t),

X ′′

X
=

T ′′

a2T
= −λ.

The corresponding eigenvalue problem of X is{
X ′′(x) + λX(x) = 0

X(0) = 0, x(1) = 0

then the eigenvalue and eigenfunction are given by

λn = n2π2, n = 0, 1, 2, · · · ,

Xn(x) = cos(nπx), n = 0, 1, 2, · · · .

The corresponding ODE of T is T ′′
n (t) + a2λnTn(t) = 0 and the general solution is given

by
T0(t) = a0 + b0t,

Tn(t) = an cos(anπt) + bn sin(anπt), n = 1, 2, · · · .

By the initial condition u(x, 0) = x,

x =
∞∑
n=0

Xn(x)Tn(0) = a0 +
∞∑
n=1

an cos(nπx),
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a0 =

ˆ 1

0

xdx =
1

2
,

an cos(nπ) = 2

1

ˆ 1

0

x cos(nπx)dx = 2
πn sin(πn) + cos(πn)− 1

π2n2

⇒ an =
2(−1)n − 2

n2π2
, n = 1, 2, · · · ,

and by the initial condition ut(x, 0) = 0,

0 =
∞∑
n=0

Xn(x)T
′
n(0) = b0 +

∞∑
n=1

bnanπ cos(nπx) ⇒ bn = 0, n ≥ 0.

Thus,

u(x, t) =
1

2
+

∞∑
n=1

2(−1)n − 2

n2π2
cos(anπt) cos(nπx).

(3) 
utt − a2uxx = 0, x ∈ (0, 1), t ∈ R,
u(0, t) = 0, ux(1, t) = 1, t ∈ R,
u(x, 0) = 0, ut(x, 0) = cos(πx), x ∈ (0, 1).

Solution. To transform non-homogeneous boundary conditions into a homogeneous, let

u(x, t) = U(x, t) + w(x, t) ⇒ U(x, t) = u(x, t)− w(x, t)

and we should choose w(x, t) for the following

U(0, t) = −w(0, t), Ux(0, t) = ux(1, t)− wx(1, t) = 1− wx(1, t)

s.t. each of them equals to zero. Here, we may take w(x, t) = x so U(x, t) = u(x, t)− x,
then there is 

Utt − a2Uxx = 0, x ∈ (0, 1), t ∈ R,
U(0, t) = 0, Ux(1, t) = 0, t ∈ R,
U(x, 0) = −x, Ut(x, 0) = cos(πx), x ∈ (0, 1).

To solve this problem, we can start the routine now. Assume U(x, t) = X(x)T (t),

X ′′

X
=

T ′′

a2T
= −λ.

The corresponding eigenvalue problem of X is{
X ′′(x) + λX(x) = 0

X(0) = 0, X ′(1) = 0

then the eigenvalue and eigenfunction are given by

λn =
(
nπ +

π

2

)2

, n = 0, 1, 2, · · · ,
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Xn(x) = sin
((
nπ +

π

2

)
x
)
, n = 0, 1, 2, · · · .

The corresponding ODE of T is T ′′
n (t) + a2λnTn(t) = 0 and the general solution is given

by
Tn(t) = an cos

(
a
(
nπ +

π

2

)
t
)
+ bn sin

(
a
(
nπ +

π

2

)
t
)
, n = 0, 1, 2, · · · .

By the initial condition U(x, 0) = x,

−x =
∞∑
n=0

Xn(x)Tn(0) =
∞∑
n=0

an sin
((
nπ +

π

2

)
x
)

⇒ an = −2

ˆ 1

0

x sin
((
nπ +

π

2

)
x
)

dx = (−1)n+1 2

(n+ 1/2)2π2
, n = 0, 1, 2, · · · .

and by the initial condition Ut(x, 0) = cos(πx),

cos πx =
∞∑
n=0

bna(n+ 1/2)π sin
(
nπ +

π

2

)
x

⇒ bn =
2

a(n+ 1/2)π

ˆ 1

0

cos(πx) sin
((
nπ +

π

2

)
x
)

dx

=
8

aπ2(4n2 + 4n− 3)
, n = 0, 1, 2, · · · .

Thus,

U(x, t) =
∞∑
n=0

(
an cos

(
a
(
nπ +

π

2

)
t
)
+ bn sin

(
a
(
nπ +

π

2

)
t
))

· sin
((
nπ +

π

2

)
x
)

so that

u(x, t) =
∞∑
n=0

((
(−1)n+1 2

(n+ 1/2)2π2

)
cos

(
a
(
nπ +

π

2

)
t
)

+

(
8

aπ2(4n2 + 4n− 3)

)
sin

(
a
(
nπ +

π

2

)
t
))

· sin
((
nπ +

π

2

)
x
)
+ x.

3 Solve the Cauchy problem.{
utt − a2uxx = 0, x ∈ R, t ∈ R,
u(x, 0) = e−x2

, ut(x, 0) = sin(x), x ∈ R.

Solution. By d’Alembert’s Formula, with ϕ(x) = e−x2 and ψ(x) = sin(x),

u(x, t) =
1

2
(ϕ(x+ at) + ϕ(x− at)) +

1

2a

ˆ x+at

x−at

ψ(s)ds

=
1

2

(
e−(x−at)2 + e−(x+at)2

)
+

1

2a

ˆ x+at

x−at

sin(s)ds

=
1

2

(
e−(x−at)2 + e−(x+at)2

)
+

1

2a
(cos(x− at)− cos(x+ at)) .
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4 Solve the Cauchy problem.{
utt − a2uxx = 0, x ∈ R, t ∈ R,
u(x, 0) = 0, ut(x, 0) = ψ(x), x ∈ R,

where

ψ(x) =

{
1, |x| < a,

0, |x| ≥ a.

Sketch the graph of u vs x at times t = 1/2, 1, 3/2, 2.

Solution. By d’Alembert’s Formula, with ϕ(x) = 0,

u(x, t) =
1

2
(ϕ(x+ at) + ϕ(x− at)) +

1

2a

ˆ x+at

x−at

ψ(s)ds

=



0, x− at ≥ a
1

2a

ˆ a

x−at

ds, −a < x− at < a, a < x+ at,

1

2a

ˆ x+at

x−at

ds, −a < x− at, x+ at < a,

1

2a

ˆ a

−a

ds, x− at < −a, a < x+ at,

1

2a

ˆ x+at

−a

ds, x− at < −a, −a < x+ at < a,

0, x+ at ≤ −a
That is,

u(x, t) =



0, x− at ≥ a or x+ at ≤ −a,
a− x+ at

2a
, −a < x− at < a, a < x+ at,

t, −a ≤ x− at, x+ at ≤ a,

1, x− at ≤ −a, a ≤ x+ at,
x+ at+ a

2a
, x− at < −a, −a < x+ at < a.

The graphs of u vs x:
If t = 1/2, then there is

u(x, t) =



0, x ≥ 3a/2 or x ≤ −3a/2,
−x+ 3a/2

2a
, a/2 < x < 3a/2,

1/2, −a/2 ≤ x ≤ a/2,
x+ 3a/2

2a
, −3a/2 < x < −a/2.

O x

u

−3a

2
−a
2

a

2

3a

2

1/2
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If t = 1, then there is

u(x, t) =



0, x ≥ 2a or x ≤ −2a,
−x+ 2a

2a
, 0 < x < 2a,

1, x = 0
x+ 2a

2a
, −2a < x < 0.

O x

u

−2a 2a

1

If t = 3/2, then there is

u(x, t) =



0, x ≥ 5a/2 or x ≤ −5a/2,
−x+ 5a/2

2a
, a/2 < x < 5a/2,

1, −a/2 ≤ x ≤ a/2,
x+ 5a/2

2a
, −5a/2 < x < −a/2.

O x

u

−5a

2
−a
2

a

2

5a

2

1

If t = 2, then there is

u(x, t) =



0, x ≥ 3a or x ≤ −3a,
−x+ 3a

2a
, a < x < 3a,

1, −a ≤ x ≤ a,
x+ 3a

2a
, −3a < x < −a.

O x

u

−3a −a a 3a

1

7 / 10



5 Let u be a solution of the wave equation. . . Is it
possible that u(x, 1) is smoother than u(x, 0)? Is it
possible to have a maximum principle for the wave
equation?

Let u be a solution of the wave equation

utt = uxx, x ∈ R, t ∈ R.

Is it possible that u(x, 1) is smoother than u(x, 0)? Is it possible to have a maximum
principle for the wave equation?

Solution.
(a) It is impossible that u(x, 1) is smoother than u(x, 0) in x.
Denoted the initial conditions as u(x, 0) = ϕ(x) and ut(x, 0) = ψ(x), consider

ux(x, 0) =
∂

∂x

(
1

2
(ϕ(x) + ϕ(x)) +

1

2

ˆ x

x

ψ(s)ds
)

=
dϕ(x)

dx , uxx(x, 0) =
d2ϕ(x)

dx2

then
ux(x, 1) =

∂

∂x

(
1

2
(ϕ(x+ 1) + ϕ(x− 1)) +

1

2

ˆ x+1

x−1

ψ(s)ds
)

=
1

2

dϕ(x+ 1)

dx +
1

2

dϕ(x− 1)

dx +
1

2

∂
(´ x+1

x−1
ψ(s)ds

)
∂x

,

uxx(x, 1) =
1

2

d2ϕ(x+ 1)

dx2 +
1

2

d2ϕ(x− 1)

dx2 +
1

2

∂2
(´ x+1

x−1
ψ(s)ds

)
∂x2

.

And the derivatives of higher degrees are similar. We have that u(x, 0) is at least smooth

as u(x, 1), because (for all x ∈ R) the existence of dkϕ(x+ 1)

dxk , k = 1, 2, · · · promises the

existence of dkϕ(x)

dxk , k = 1, 2, · · · .

(b) There is no a maximum principle for the wave equation. Construct a counterex-
ample as following:

Suppose that there is a maximum principle for the wave equation and u(x, t) =
sinx sin t is a solution for the wave equation in a rectangle (0, L)×(0, T ) := (0, π)×(0, π),
where uxx = − sinx sin t = utt. According to the maximum principle, the maximum of
u(x, t) is zero since

u(0, t) = 0, u(π, t) = 0, u(x, 0) = 0, u(x, π) = 0,

but in the rectangle there is u
(π
2
,
π

2

)
= 1, which is a contradiction.

Besides, we also see that a solution for the wave equation may not satisfy the prereq-
uisite −∆u ≤ 0, for above example

−∆u = −uxx − utt = 2 sinx sin t ̸≤ 0.
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6 Let u be the solution of. . . Show that if both ϕ and
ψ are even functions, then so is u in x. Formulate
and prove the analog when both ϕ and ψ are odd.

Let u be the solution of{
utt − a2uxx = 0, x ∈ R, t ∈ R,
u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ R.

Show that if both ϕ and ψ are even functions, then so is u in x. Formulate and prove the
analog when both ϕ and ψ are odd.

(1) For Even Initial Conditions

We want to show that if both ϕ and ψ are even functions, then so is u in x
Even ϕ(x) and ψ(x) give that ϕ(x) = ϕ(−x) and ψ(x) = ψ(−x). The associated

initial value problem for u(−x, t) is{
utt(−x, t)− a2uxx(−x, t) = 0, x ∈ R, t ∈ R,
u(−x, 0) = ϕ(−x) = ϕ(x), ut(−x, 0) = ψ(−x) = ψ(x), x ∈ R,

and consider u(x, t)−u(−x, t) as a linear combination of two solution of the wave equation
s.t. {

(u(x, t)− u(−x, t)) = a2 (u(x, t)− u(−x, t)) , x ∈ R, t ∈ R,
u(x, 0)− u(−x, 0) = 0, ut(x, 0)− ut(−x, 0) = 0, x ∈ R.

Clearly, a solution is u(x, t)− u(−x, t) = 0. Because the solution to the wave equation is
unique, it is the only required solution. Thus, u(x, t) = u(−x, t), implying even u in x.

(2) For Odd Initial Conditions

We also have that if both ϕ and ψ are odd functions, then so is u in x.
Odd ϕ(x) and ψ(x) give that ϕ(x) = −ϕ(−x) and ψ(x) = −ψ(−x). The associated

initial value problem for u(−x, t) is{
utt(−x, t)− a2uxx(−x, t) = 0, x ∈ R, t ∈ R,
u(−x, 0) = ϕ(−x) = −ϕ(x), ut(−x, 0) = ψ(−x) = −ψ(x), x ∈ R,

and consider u(x, t)+u(−x, t) as a linear combination of two solution of the wave equation
s.t. {

(u(x, t) + u(−x, t)) = a2 (u(x, t) + u(−x, t)) , x ∈ R, t ∈ R,
u(x, 0) + u(−x, 0) = 0, ut(x, 0) + ut(−x, 0) = 0, x ∈ R.

Clearly, a solution is u(x, t) + u(−x, t) = 0. Because the solution to the wave equation is
unique, it is the only required solution. Thus, u(x, t) = −u(−x, t), implying odd u in x.
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7 (Principle of causality) Let u be a smooth solution
of the wave equation utt = uxx, x ∈ R, t ≥ 0. Prove
that. . .

Let u be a smooth solution of the wave equation

utt = uxx, x ∈ R, t ≥ 0.

Prove that for any (x0, t0) ∈ (−∞,+∞)× (0,+∞),
ˆ x0+t0−t

x0−t0+t

1

2

(
u2t + u2x

)
(x, t) dx ≤

ˆ x0+t0

x0−t0

1

2

(
u2t + u2x

)
(x, 0) dx, ∀0 < t < t0.

Hint: multiply the wave equation by ut and then try to re-write the equation in the form

Ft −Gx = 0.

Integrate this equation and apply Green’s Theorem to the trapezoid bounded by the
x-axis, the characteristic lines passing through (x0, t0), and the horizontal line t = t.

Proof. Multiply the wave equation by ut as

ututt = utuxx

and rewrite in the form

Ft −Gx =
∂

∂t

(utut
2

+
uxux
2

)
− ∂

∂x
(utux)dx = 0.

Integrate this equation we have ˆ
Ω

Ft −GxdA = 0

then by Green’s Theorem ˛
∂Ω

< Ft,−Gx > ·n dS = 0

⇒
ˆ
R

< Ft,−Gx > ·nRdS +

ˆ
T

< Ft,−Gx > ·nTdS +

ˆ
M

< Ft,−Gx > ·nMdS = 0

and so ˆ
T

1

2

(
u2t + u2x

)
dS +

ˆ
M

< Ft,−Gx > ·nMdS =

ˆ
R

1

2

(
u2t + u2x

)
dS

where Ω is the area bounded by the x-axis (denoted as R), the characteristic lines passing
through (x0, t0) (denoted as M), and the horizontal line t = t (denoted as T ). Let
ξ = x− x0, then it is not hard to deduceˆ

M

< Ft,−Gx > ·nMdS =
1√
2

ˆ
M

(
(ut − uξ)

2

2
+

(ux − uξ)
2

2

)
dS ≥ 0.

Hence we end up with the inequalityˆ x0+t0−t

x0−t0+t

1

2

(
u2t + u2x

)
(x, t)dx ≤

ˆ x0+t0

x0−t0

1

2

(
u2t + u2x

)
(x, 0)dx, ∀ 0 < t < t0.

■
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