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1 Derive the free Green’s function G0(x) in 3-D.

Solution. We have the free Green’s function of Laplace equation

−∆G0(x) = δ(x), x ∈ R3. (∗)

In 3-D case, note that δ(x) is spherically symmetric about the origin. It is reasonable to
seek spherically symmetric solution:

G0(x) = F (r), r = |x|.

With Laplace operator in polar and spherical coordinates, we have

G0(x) =
d2F

dr2 +
2

r

dF
dr =

1

r2
d
dr

(
r2

dF
dr

)
.

Equation (∗) leads to
d
dr

(
r2

dF
dr

)
= −r2δ(x),

r2
dF
dr = −

ˆ r

0

r2δ(x)dr

= − 1

4π

ˆ π

0

ˆ 2π

0

ˆ r

0

δ(x)r2 sin θdrdϕdθ

= − 1

4π

˚
|x|<r

δ(x)dx

= − 1

4π

˚
R3

δ(x)dx

= − 1

4π
where Ω is the spherical shell and the divergence theorem is applied.

Now we have the ODE dF
dr = − 1

4πr2
and its solution F (r) =

1

4πr
+ C, where C is a

constant. Since constant C is a trivial solution of Laplace equation ∆u = 0, simply take
C = 0. Finally,

G0(x) =
1

4π|x| .

2 A spherical shell with inner radius 1 and outer ra-
dius 2 has a steady-state temperature distribution
u . . .

A spherical shell with inner radius 1 and outer radius 2 has a steady-state temperature
distribution u. Its inner boundary is held at 100◦C. Its outer boundary satisfies

∂u

∂n = −γ,

where γ is a constant.
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(1) Find the temperature u. Hint: everything is radial and hence so is u.

The steady-state temperature u follows the Laplace equation. With the Laplacian oper-
ator in spherical coordinates, we have

∆u =
∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2 sin θ
∂

∂θ

(
sin θ∂u

∂θ

)
+

1

r2 sin2 θ

∂2u

∂ψ2
= 0.

Notice that the everything is radial and hence so is u. Then, the PDE simplifies to

d2u

dr2 +
2

r

du
dr = 0.

Since it is a first-order ODE for du/dr, rewrite the ODE as dD
dr +

2

r
D = 0 where D =

du/dr. The solution is D =
C1

r2
where C1 is a constant. To determine C1, use the

boundary condition at the outer radius

D|r=2 =
C1

4
= −γ

thus C1 = −4γ. Now we have du
dr = −4γ

r2
. The solution is u(r) = 4γ

r
+ C2 where C2 is a

constant. To determine C2, use the boundary condition at the inner radius

u(1) = 4γ + C2 = 100

thus C2 = 100− 4γ. Finally,

u(r) =
4γ

r
+ 100− 4γ, 1 < r < 2.

(2) What are the hottest and coldest temperatures?

By the strong maximum (minimum) value theorem, the maximum and minimum temper-
atures occur at r = 1, r = 2. That is, if γ ≥ 0, the hottest temperature takes u(1) = 100
and the coldest temperature takes u(2) = 100−2γ. And if γ < 0, the hottest temperature
takes u(2) = 100− 2γ and the coldest temperature takes u(1) = 100.

(3) Can you choose γ so that the temperature on the outer boundary is
20◦C?

There is u(2) = 100− 2γ = 20 ⇒ γ = 40.

3 Suppose that u is a harmonic function in disk D =

{r < 2} and that u = 3 sin(2θ) + 1 for r = 2 . . .
Suppose that u is a harmonic function in disk D = {r < 2} and that u = 3 sin(2θ) + 1
for r = 2. Without finding the solution, answer the following questions:
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(1) Find the maximum value of u in D;

For u = 3 sin(2θ) + 1, θ ∈ [0, 2π), by the maximum principle, it is sufficient to consider u
on ∂D:

max
(r,θ)∈∂D

u = 4

when r = 2, θ = π/4.

(2) Calculate the value of u at the origin.

By the mean value property

u(0, 0) =
1

2π

ˆ 2π

0

(3 sin(2θ) + 1) dθ = 1.

4 Find the Green’s function G(M ;M0) for Dirichlet
problem in the first quadrant of plane.{

−∆G = δ(M −M0) in Ω = {M = (x, y); x > 0, y > 0},
G|x=0 = 0, G|y=0 = 0.

Solution. We have the Green’s function for the whole plane

G0(x) = − 1

2π
ln |x|.

and so
G0(x − x0) = − 1

2π
ln |x − x0|.

Applying the method of images, shown in the figure,

x0x02

x03 x04

x

y

x > 0, y = 0x = 0, y > 0

since G(x; x0) is identically equal to zero on the positive x-axis and y-axis, we have

G(x; x0) = G0(x − x0)−G0(x − x02)−G0(x − x04) +G0(x − x03)

where let x = (x, y) and x0 = (x0, y0) s.t. x02 = (−x0, y0), x03 = (−x0,−y0) and
x04 = (x0,−y0). Thus,

G(x; x0) = − 1

2π
ln |x − x0|+

1

2π
ln |x − x02|+

1

2π
ln |x − x04| −

1

2π
ln |x − x03|

= − 1

4π
ln ((x− x0)

2 + (y − y0)
2) ((x+ x0)

2 + (y + y0)
2)

((x+ x0)2 + (y − y0)2) ((x− x0)2 + (y + y0)2)
.
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5 Select a suitable method to solve the following
boundary value problems.

(1) {
∆u = 0 in Ω = {M = (r, θ); 0 ≤ r < R, 0 ≤ θ < 2π},
u(R, θ) = A cos θ.

Solution. With the separation of variables, let the solution u(x, y) = R(r)Θ(θ). By the
Laplace operator in polar coordinates,

r2R′′ + rR′

−R
=

Θ′′

Θ
≡ −λ

so we have
Θ′′(θ) + λΘ(θ) = 0,

r2R′′(r) + rR′(r)− λR(r) = 0.

The function Θ(θ) must be 2π-periodic, as the boundary condition. The eigenvalues and
eigenfunctions are given by

λn = n2, n = 0, 1, 2, · · · ,

Θn(θ) = An cos(nθ) + Bn sin(nθ), n = 0, 1, 2, · · · .
By solving the Euler’s equation, we have

R0(r) = C0 +D0 ln r, Rn(r) = Cnr
n +Dnr

−n, n = 1, 2, · · · .

That is, the solution can be written in the form of

u(r, θ) = C0 +D0 ln r +
∞∑
n=1

(
Cnr

n +Dnr
−n

)
(An cos(nθ) + Bn sin(nθ))

The solution u(r, θ) must be continuous, and then bounded, at r = 0. Therefore the
coefficients Dn including D0 must be zero. Then

u(r, θ) = C0 +
∞∑
n=1

Cnr
n (An cos(nθ) + Bn sin(nθ))

or rewrite the coefficients as

u(r, θ) =
a0
2

+
∞∑
n=1

rn (an cos(nθ) + bn sin(nθ)) .

By the B.C. u(R, θ) = A cos θ, i.e. a0
2

+
∞∑
n=1

Rn (an cos(nθ) + bn sin(nθ)) = A cos θ

an = 0, n ̸= 1,

an =
A

R
, n = 1,

bn = 0, n = 1, 2, · · · .
Hence, the solution is

u(r, θ) =
A

R
r cos θ.
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(2) {
∆u = 1 in Ω = {M = (r, θ); 0 ≤ r < R, 0 ≤ θ < 2π},
u(R, θ) = 0.

Hint: the region and B.C. are radially symmetric and hence the solution should be radially
symmetric.

Solution. Since the region and B.C. are radially symmetric, the solution should be radially
symmetric. That is, let u(r, θ) = R(r) then we have

R′′(r) +
1

r
R′(r) = 1.

The solution is R(r) = c1 ln(r) + c2 +
r2

4
. At r = 0, the continuous and bounded u gives

c1 = 0. By the B.C. u(R, θ) = 0,

c2 +
R2

4
= 0 ⇒ c2 = −R

2

4
.

Thus
u(r, θ) =

r2

4
− R2

4
.

(3) ∆u =
A

2
r2 sin(2θ) in Ω = {M = (r, θ); 0 ≤ r < R, 0 ≤ θ < 2π},

u(R, θ) = 0.

Hint: For each fixed r, u(r, θ) is 2π–periodic function of θ which can be expanded by the
eigenfunctions with 2π-period B.C.. Thus u takes the form of

u(r, θ) = A0(r) +
∞∑
n=1

(An(r) cos(nθ) + Bn(r) sin(nθ)) .

Solution. For each fixed r and with thinking of u as a 2π-periodic function of θ, we can
write u(r, θ) as a series involving An cos(nθ) + Bn sin(nθ), n = 0, 1, 2, · · · ,

u(r, θ) = A0(r) +
∞∑
n=1

(An(r) cos(nθ) + Bn(r) sin(nθ)) .

Apply the Laplace operator in polar coordinates

∆u = A′′
0(r) +

A′
0(r)

r
+

∞∑
n=1

((
A′′

n(r) +
A′

n(r)

r
− n2An(r)

r2

)
cos(nθ)

+

(
B′′

n(r) +
B′

n(r)

r
− n2Bn(r)

r2

)
sin(nθ)

)
=
A

2
r2 sin(2θ).
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Comparing both sides, we have that all the An = 0, Bn = 0, except A0 and B2 which
must satisfy

A′′
0(r) +

A′
0(r)

r
= 0,

B′′
2 (r) +

B′
2(r)

r
− 4B2(r)

r2
=
A

2
r2.

We are familiar with the solution of the A0-equation as

A0(r) = C +D ln r.

For the B2-equation, the general solution for the corresponding homogeneous equation

B′′
2 (r) +

B′
2(r)

r
− 4B2(r)

r2
= 0

is given by c1r2 + c2r
−2 then with a particular solution Ax4

24
, we have

B2(r) = c1r
2 + c2r

−2 +
Ar4

24
.

u must be in the form

u(r, θ) = C +D ln r +
(
c1r

2 + c2r
−2 +

Ar4

24

)
sin(2θ).

At r = 0, the continuous and bounded u promises D = c2 = 0. By the B.C. u(R, θ) = 0,

C +

(
c1R

2 +
AR4

24

)
sin(0) = 0 ⇒ C = 0,

and

C +

(
c1R

2 +
AR4

24

)
sin(2θ) = 0 ⇒ C = −

(
c1R

2 +
AR4

24

)
sin(2θ) = 0

⇒ c1R
2 +

AR4

24
= 0 ⇒ c1 = −AR

2

24
.

Finally,

u(r, θ) =

(
−AR

2r2

24
+
Ar4

24

)
sin(2θ).

(4) 
∆u = 0 in Ω = {M = (x, y); 0 < x < π, 0 < y < π},
u(0, y) = 0, u(π, y) = cos2 y,
uy(x, 0) = 0, uy(x, π) = 0.

Solution. With the separation of variables, let the solution u(x, y) = X(x)Y (y). By the
PDE,

X ′′(x)Y (y) +X(x)Y ′′(y) = 0
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and so
−X

′′(x)

X(x)
=
Y ′′(y)

Y (y)
≡ −λ.

We have Y ′′(y)+λY (y) = 0 and Y satisfies the Neumann B.C. Y ′(0) = Y ′(π) = 0. Thus,
the eigenvalues and eigenfunctions are given by

λn = n2, n = 0, 1, 2, · · · ,

Yn(y) = cos(ny), n = 0, 1, 2, · · · .

Besides, the solution of X ′′(x) − λX(x) = 0 is Xn(x) = c1e
nx + c2e

−nx, n = 1, 2, · · · and
Xn(x) = c1x + c2 for n = 0. By the B.C. X(0) = 0, there must be c2 = 0 for n = 0 and
c2 = −c1 for n = 1, 2, · · · , i.e.

X0(x) = a0x, Xn(x) = an(e
nx − e−nx).

Now we form

u(x, y) =
∞∑
n=0

Xn(x)Yn(y) = a0x+
∞∑
n=1

an(e
nx − e−nx) cos(ny).

To satisfy the B.C. u(π, y) = cos2 y, it requires

a0π +
∞∑
n=1

an(e
nπ − e−nπ) cos(ny) = cos2 y,

from which we have
ˆ π

0

a0πdy =

ˆ π

0

cos2 ydy =

ˆ π

0

1 + cos(2y)
2

dy =
π

2
⇒ a0 =

1

2π
,

ˆ π

0

an(e
nπ − e−nπ) cos2(ny)dy =

ˆ π

0

cos2 y cos(ny)dy =

ˆ π

0

1 + cos(2y)
2

cos(ny)dy

=

{
π/4 , n = 2,

0 , n ̸= 2.
⇒ an =


1

2(e2π − e−2π)
, n = 2,

0 , n ̸= 2.

Hence,

u(x, y) =
1

2π
x+

(e2π − e−2π)

2(e2π − e−2π)
cos(2y)

=
1

2π
x+

1

2
cos(2y).

(5) 
∆u = 0 in Ω = {M = (x, y); 0 < x < a, 0 < y < b},
u(0, y) = 0, u(a, y) = 0,(
∂u

∂y
+ u

)∣∣∣∣
y=0

= 0, u(x, b) = g(x).
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Solution. With the separation of variables, let the solution u(x, y) = X(x)Y (y). By the
PDE,

X ′′(x)Y (y) +X(x)Y ′′(y) = 0

and so
X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
≡ −λ.

We have X ′′(x) + λX(x) = 0 and X satisfies the Dirichlet B.C. X(0) = X(a) = 0. Thus,
the eigenvalues and eigenfunctions are given by

λn =
(nπ
a

)2

, n = 1, 2, · · · ,

Xn(x) = sin
(nπx

a

)
, n = 1, 2, · · · .

Besides, a solution of Y ′′(y)− λY (y) = 0 is

Yn(y) = cn cosh nπy
a

+ dn sinh nπy
a
, n = 1, 2, · · · .

Now we form

u(x, y) =
∞∑
n=1

Xn(x)Yn(y) =
∞∑
n=1

sin
(nπx

a

)(
cn cosh nπy

a
+ dn sinh nπy

a

)
where the coefficients an are given by

anYn(b) =
2

a

ˆ a

0

g(x) sin nπx
a

dx.

By the boundary condition(
∂u

∂y
+ u

)∣∣∣∣
y=0

=
∞∑
n=1

sin
(nπx

a

)(
cn
nπ

a
· 0 + dn

nπ

a
· 1
)
+

∞∑
n=1

sin
(nπx

a

)
(cn · 1 + dn · 0)

=
∞∑
n=1

sin
(nπx

a

)(
dn
nπ

a
+ cn

)
= 0

the solution requires
dn
nπ

a
+ cn = 0.

Also,

u(x, b) =
∞∑
n=1

sin
(nπx

a

)(
cn cosh nπb

a
+ dn sinh nπb

a

)
= g(x)

from which we derive
a

2

(
cn cosh nπb

a
+ dn sinh nπb

a

)
=

ˆ a

0

g(x) sin
(nπx

a

)
dx.

Finally, the coefficients can be solved explicitly as

cn =
2

a

(
cosh nπb

a
− a

nπ
sinh nπb

a

) ˆ a

0

g(x) sin
(nπx

a

)
dx,

dn =
2

a

(
sinh nπb

a
− nπ

a
cosh nπb

a

) ˆ a

0

g(x) sin
(nπx

a

)
dx.
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6 Find the solutions that depend only on r of the
Helmholtz equation −∆u = λ2u in 3-D, where λ > 0

is a constant.

Solution. With the Laplacian operator in spherical coordinates, we have

∆u =
∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2 sin θ
∂

∂θ

(
sin θ∂u

∂θ

)
+

1

r2 sin2 θ

∂2u

∂ψ2
= −λ2u.

To find solutions that depend only on the radial coordinate r, i.e. solution is spherically
symmetrical, it is sufficient to solve an ODE

d2u

dr2 +
2

r

du
dr = −λ2u ⇒ d2u

dr2 +
2

r

du
dr + λ2u = 0. (∗)

Introduce a new function
u(r) =

v(r)

r

s.t the original equation (∗) becomes(
1

r

d2v

dr2 − 2

r2
dv
dr +

2v

r3

)
+

2

r

(
1

r

dv
dr − v

r2

)
+ λ2

(v
r

)
= 0

⇒ 1

r

d2v

dr2 +
λ2

r
v = 0 ⇒ d2v

dr2 + λ2v = 0.

The general solution to this simplified second-order linear ODE is

v(r) = A sin(λr) + B cos(λr)

where A,B are constants to be determined. Returning to the original u, the solution is
given by

u(r) =
A sin(λr)

r
+
B cos(λr)

r
.

7 Show that there is no solution of. . .
Show that there is no solution of{

∆u = f in Ω ⊂ R3,
∂u
∂n

= g on ∂Ω.

unless ˆ
Ω

fdx =

ˆ
∂Ω

gdS.

Proof. Suppose that ˆ
Ω

fdx ̸=
˛
∂Ω

gdS. (∗)
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By the definition we have ˆ
Ω

fdx =

ˆ
Ω

∆udx

and ˛
∂Ω

gdS =

˛
∂Ω

∂u

∂n
dS =

˛
∂Ω

∇u · ndS.

However, we see that (∗) deduces the solution u satisfying
ˆ
Ω

∆udx ̸=
˛
∂Ω

∇u · ndS

which is contradictory to the Divergence Theorem. ■

8 Let Ω be a bounded domain in Rn with smooth
boundary. . .

Let Ω be a bounded domain in Rn with smooth boundary. Consider Poisson equation
with Neumann boundary condition−∆GN(x; x0) = δ(x − x0), x ∈ Ω,

∂GN(x; x0)

∂n = const. C, x ∈ ∂Ω.

(1) Find the value of const. C such that the above boundary value problem
has a solution.

Solution. One must have
ˆ
∂Ω

∂GN(x; x0)

∂n dS =

ˆ
Ω

∆GN(x; x0)dV =

ˆ
−δ(x − x0)dV = −1.

Thus, ˆ
∂Ω

CdS = −1 ⇒ C = − 1ˆ
∂Ω

dS
⇒ C = − 1

|∂Ω|
.

(2) By using GN , find a formula for u(x0)

where u is a solution of {
−∆u = f(x), x ∈ Ω,
∂u
∂n

= g(x), x ∈ ∂Ω.

Solution. By Green’s second identity,
ˆ
Ω

(u(x)∆GN(x; x0)−GN(x; x0)∆u(x)) dV

=

ˆ
∂Ω

(
u(x)∂GN(x; x0)

∂n −GN(x; x0)
∂u(x)
∂n

)
dS.
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then, after substituting,
ˆ
Ω

(−u(x)δ(x − x0) +GN(x; x0)f(x)) dV =

ˆ
∂Ω

(u(x) · C −GN(x; x0)g(x)) dS.

Therefore,

−u(x0) +

ˆ
Ω

GN(x; x0)f(x)dV = C

ˆ
∂Ω

u(x)dS −
ˆ
∂Ω

GN(x; x0)g(x)dS

u(x0) = −C
ˆ
∂Ω

u(x)dS +

ˆ
∂Ω

GN(x; x0)g(x)dS +

ˆ
Ω

GN(x; x0)f(x)dV

where
−C
ˆ
∂Ω

u(x)dS =
1

|∂Ω|

ˆ
∂Ω

u(x)dS

is a constant.

9 Consider Poisson equation. . .
Consider Poisson equation −∆u = f(x), x ∈ R3,

lim
|x|→∞

u = 0,

where

f(x) =

{
1, if |x| ≤ 1,

0, if |x| > 1.

(1) Solve this equation (leave your answer as an integral).

Since lim
|x|→∞

u = 0 promises the integrability, the solution is given by

u(x) =
ˆ
R3

f(x0)G(x; x0)dVx0 =

ˆ
R3

1

4π|x − x0|
f(x0)dVx0 .

Substituting f(x), it leads to

u(x) =
ˆ
|x0|≤1,x0∈R3

1

4π|x − x0|
dVx0 .

(2) Find lim|x|→∞ |x|u(x).

lim
|x|→∞

|x|u(x) = lim
|x|→∞

|x|
ˆ
|x0|≤1,x0∈R3

1

4π|x − x0|
dVx0 = lim

|x|→∞
|x| · 1

4π|x| ·
4

3
π =

1

3
.
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(3) Let c be the limit found in (ii). Then u(x) ≈ c
|x| for |x| large. Interpret

this physically.

u(x) ≈ 1

3|x| for |x| large.

Physically, this means that when |x| is larger enough, u satisfying the PDE decays as the
reciprocal function (u(x) ∼ 1/|x|). In particular, for the electrostatic field problem, given
a uniform spherical charge, such a solution u describes how the potential diminishes with
distance when the location is far away enough.

10 (Harnack Inequality) Let u be a nonnegative har-
monic function in Rn. Prove that. . .

Let u be a nonnegative harmonic function in Rn. Prove that

sup
Rn

u ≤ 2n inf
Rn
u.

Hint: take an arbitrary pair of points P and Q. Let R = |P − Q|. Use the mean value
property of harmonic functions on the balls BR(P ) and B2R(Q) (balls centered at P and
Q with radius R and 2R, respectively).

Proof. Consider an arbitrary pair of points P and Q and let R = |P −Q|.
First, set point P as the center of a sphere with radius R s.t. Q is a point at the

surface S of sphere. Applying the Poisson’s formula for the n-dimension sphere,

u(x) =
ˆ
S

ϕ(ξ)
R2 − |x|2

ωn−1R|x − ξ|n
dSξ

where x is a point in the sphere and ωn−1 is the surface area of the unit (n−1)-dimension
sphere. Then, with the point y on the surface, we have

u(x) =
ˆ
S

u(y) R2 − |x|2
ωn−1R|x − y|ndSy.

For the Poisson kernel, by max(|x − y|) = R + |x| and min(|x − y|) = R− |x|,

R2 − |x|2
ωn−1R(R + |x|)n ≤ R2 − |x|2

ωn−1R|x − y|n ≤ R2 − |x|2
ωn−1R(R− |x|)n .

That is,

R2 − |x|2
ωn−1R(R + |x|)n

ˆ
S

u(y)dSy ≤ u(x) ≤ R2 − |x|2
ωn−1R(R− |x|)n

ˆ
S

u(y)dSy.

Use the mean value property of harmonic functions on the ball,

u(0) = 1

Ωn−1(R)

ˆ
S

u(y)dSy =
1

ωn−1Rn−1

ˆ
S

u(y)dSy,
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where Ωn−1(R) is the surface area of (n− 1)-dimension sphere with radius R, we have

Rn−2 R
2 − |x|2

(R + |x|)nu(0) ≤ u(x) ≤ Rn−2 R
2 − |x|2

(R− |x|)nu(0)

rewritten as
Rn−2 R

2 − |xp|2

(R + |xp|)n
u(p) ≤ u(xp) ≤ Rn−2 R

2 − |xp|2

(R− |xp|)n
u(p).

Then, choose a sphere with radius 2R centered at Q s.t.

2n−2Rn−2 4R2 − |xp|2

(2R + |xp|)n
u(q) ≤ u(xp) ≤ 2n−2Rn−2 4R2 − |xp|2

(2R− |xp|)n
u(q).

Thus,

Rn−2 R
2 − |xp|2

(R + |xp|)n
u(p) ≤ 2n−2Rn−2 4R2 − |xp|2

(2R− |xp|)n
u(q)

⇒ u(p) ≤ 2n−2u(q)
(
4R2 − |xp|2

R2 − |xp|2

)
/

(
(2R− |xp|)n

(R + |xp|)n

)
.

For the whole space Rn, let R tend to infinity so that

u(p) ≤ 2n−2u(q) · 4 = 2nu(q).

Since sup
Rn

u < +∞ is implied by above inequality, let sup
Rn

u = u(p) and inf
Rn
u = u(q), then

sup
Rn

u ≤ 2n inf
Rn
u.

■

11 (Liouville Theorem) Prove that any harmonic func-
tion u in the whole Rn that is either bounded from
below or above must be a constant function. . .

Prove that any harmonic function u in the whole Rn that is either bounded from below
or above must be a constant function. Hint: Consider either u− infu or supu− u.

Proof. Suppose u is a harmonic function on Rn, bounded by M . Let x ∈ Rn and let
r > 0. By the ball-volume version of the mean-value property

|u(x)− u(0)| = 1

V (B(0, r))

∣∣∣∣ˆ
B(x,r)

udV −
ˆ
B(0,r)

udV
∣∣∣∣ ≤M

V (B(0, r)∆B(x, r))
V (B(0, r))

where B(0, r)∆B(x, r) means the symmetric difference of the two balls i.e.

B(0, r)∆B(x, r) = (B(0, r) ∪B(x, r)) \ (B(0, r) ∩ B(x, r)) .

Notice V (B(0, r)∆B(x, r)) → V (B(0, r)) as r → ∞, thus it forces

|u(x)− u(0)| = 0 ⇒ u(x) = u(0)

which says that u is constant.
■
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12 (Decay rate of harmonic functions) Suppose u is
harmonic in the exterior of the ball BR(0) in R3. . .

Suppose u is harmonic in the exterior of the ball BR(0) in R3 such that it decays at
infinity:

lim
|x|→∞

u(x) = 0.

(1) Define v(x) = MG0(x) − u(x) where G0 is the fundamental solution of
Laplace equation. . .

v(x) =MG0(x)− u(x),
where G0 is the fundamental solution of Laplace equation, and the constant M is taken
large enough such that v > 0 on ∂BR(0). Prove that v is positive in the exterior of BR(0).
Hint: argue by contradiction and use the strong minimum principle.

Proof. Suppose v ≤ 0 in the exterior of B(0, R), we have

−∆v = −M∆G0(x) + ∆u(x) ≥ 0.

In the region R3\(B(0, R)\∂B(0, R)), the strong minimum principle promise that the
minimum function value of v is taken only on the boundary ∂B(0, R), since lim

|x|→∞
u(x) = 0

gives that v is not a constant function here.
That is, in the exterior of B(0, R), v > min

x∈∂B(0,R)
v(x) > 0, which means that the

assumption v ≤ 0 is impossible.
■

(2) Prove that u decays at infinity at least as fast as the fundamental solu-
tion.

Proof. In 3-D case, there is
G0(x0) =

1

4π|x| > 0.

Assume that u(x) does not decay at least as fast as the fundamental solution at infinite,
i.e., for an arbitrary constant C > 0, there exists r > 0 such that u(x) > CG0(x) for all
|x| > r (in the exterior of B(0, r)).

Take C = M and an x0 ∈ R3 s.t. |x0| > R0 = max{R, r} satisfying above statement,
we have

v(x0) =MG0(x0)− u(x0) = CG0(x0)− u(x0) < 0

which is contradictory to the result of (1).
■
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