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1 (Transmission conditions) Consider a surface S that
separates two media with different thermal con-
ductivities £; and k5 ...

Consider a surface S that separates two media with different thermal conductivities &,

and ko. Let u; and us be the temperature in the media. Suppose the media are in
intimate contact along the surface S so we have

U = uy on S. (1)
Prove that on S,
6u1 8u2
ko —— = —fy—= 2
" on “on’ )

where n is the unit normal vector field of the surface S. ((1) and (2) are called transmission
conditions.) Hint: Take an arbitrary patch AS of S, and think about the rate at which
thermal energy crosses the patch in the direction of the normal.

ky ko

S

Proof. Consider a small arbitrary area element AS on the surface S. The heat flux across
AS is given by Fourier’s law

q; = —kiVuy, qy = —kaVus,

where q;, q, are the local heat flux densities. Then, the thermal energy across the whole
S should be conserved which implies that along the normal of each AS

Fi=q, - n=-kVu; -n, F,=qy, -n=-kVu, n.

That is, Fy = F, gives —k;Vuy - n = —kyVus - n. Denoted n = (n,,n,,n,) as the unit
normal vector of AS, there is

. 8U1 8u1 8u1
—k:1Vu1 -n = —kl (%, 8—y, E) . (nx, ’I’Ly, TLZ) s

Ous Ous Ou
_k2vu2 ‘n = _k2 (a_;u 6_;7 a_;) ' (n:ru ny; nz) )

which means the desired transmission condition
8u1 8u2

et = 2
'on > on
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2 (Effective boundary condition on a coated body)

Let a body € (space shuttle or turbine engine) be thermally insulated by a thin coating
(25 of thickness J; assume the outer boundary of the coating is subject to a high exterior
temperature H. Let u; be the temperature function in €; and us be that in €, that
satisfies 1.(1) on 0€;. Let the thermal conductivities of the body and the coating be k;
and ko, respectively. Prove that on the boundary 9€2; of the body, we have approximately

Robin boundary condition

(9u1 kQ .

where n is the unit outer normal vector field of 9€2;. (Equation (3) is called the effective
boundary condition; its significance is that with it we do not need to solve, analytically or
numerically, the heat equation inside the coating—we just need to solve it inside the body
with (3) as the B.C.) To insulate the body well, what should be the scaling relationship
of ky and 07 Hint: start with 1.(2); fix a point = on 9, and define f(7) = uz(z + 7n).
Then perform a Taylor expansion of f at 0.

Qo

Proof. For a point z on 0, define f(7) = uy(x + m™n) where 7 varies from 0 to § and
f satisfies 1-dimension heat equation ko f”(7) = 0. The Taylor expansion of f at 0 gives

that
> f(n)(())

n (T—O)":f(0)+f’(0)7-+0(7_2)+”_

f(r) =

(]

and f(o) = UQ(ZL‘) = Ul(l’)7 f’(O) = VUQ(ZL’) n = aug(l’)/an After substituting,
f(1) = ug(x) + Qug(x)/On - 7

which implies
8u2 ~ H — Uy

~

on )

by the small § and boundary condition f(d) = H. Then, on 9€2; we have the transmission
condition

8u1 . 8u2 3u1 . kQ(H — ul)
g on k2 on =k on ) '
Thus 9 .
Uy 2 .
k‘la—n + ?(Ul — H) =0.
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3 Solve the following eigenvalue problems.

(1)

Y'E) +AY(E) =0, 0<¢&<2l
Y'(0) = 0,Y (2

S~—
I
e

The eigenvalues and eigenfunctions are given by

1 2
)\n:(w> , n:071’27...

and .
Yn(g):COS <w5)7 n:()71727"'-

The solution of the original problem is

1 2
)\n:(w> , n2071,27...

21
and )
X, (z) = cos (%(m—l—l)) , n=0,1,2---.
(2)
X"(x) +AX(z) =0, 0<x<lI,
X(x) is a periodic function with period [.

Solution. Since X (x) is a periodic function with period I, X (0) = X (1), X’(0) = X'(l). By
the general solution of the ODE (maybe in an exponential form with imaginary numbers),

X(,I’) = Cle\/ja: + 026_\/?>\$, X/(ZIZ') — Cl\/__)\ex/?)\:c _ OQ\/—_)\B_\/TAJ:
and the boundary condition,

Cy + Cy = CreV=N 4 Che= VA,
CIvV=X — Cov/=X = Civ/=eV N — Cy/=Ne VA

that is,
Cl 1—6\/?” +CQ 1—6_\/jl :0,

Cl 1—6\/_7)\1 +02 6_\/_7)\[—1 = 0.
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For nonzero solution {C4, Cs}, one must have

=0,

1—eV/ N 1 —e VN
'1 _ 6\/j>\l e—JTAl -1

then 2 = eV~ 4 ¢=V=M je. cosh (\/—)\l) = 1 which has complex solutions
V=AM = 2irk, keZ.

2
)\k:—(ﬁl), /{EZ,

with A = 0 (the equation reduces to X”(x) = 0 here), k = 0, X (z) = aox + by, and A # 0,

k% = (—k)?, there is
2mn\”
A= () =012,

This leads to

l

The corresponding eigenfunctions are given by

. , 2 2
X, (z) = Cye?™/t 4 Che=2mme/l — g, cos ( 7Tlnx> + b, sin ( 7rlnzv> , n=01,2---

where a,,, b, are constants to be determined.

4 Find the eigenvalues of the following problem graph-
ically. ..

Find the eigenvalues of the following problem graphically

X"+ AX =0, ze€(0,0),
X(0) =0,
X'()+hX(1)=0

where h is a nonzero constant that may not be positive. Note that negative eigenvalues
may appear. In this case, what is the behavior of the solution for the corresponding
initial-boundary value problem for the homogeneous heat equation?

Solution.
(a) For the case A > 0, we have the general solution of the ODE in the eigenvalue problem

X () = Cy sin(VAz) + Cy cos(VAz).
That is, by the boundary condition X (0) = 0,
X(z) = sin(v/Az).
And the boundary condition X'(1) + hX(l) = 0 leads to
VA cos(VAL) + hsin(v/Al) = 0,
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i.e.

% — —tanp, where u = VAl

Then

2
)\n:<%> n=123- -,

Xn(x):sin’ilx n=1,2,3,---,

are infinitely many eigenvalues and eigenfunctions of this problem.

(b) For the case A = 0, if h # —1/l, A\ = 0 can not be an eigenvalue. Or if h = —1/I,

A =0 is the eigenvalue and X (z) = x is the eigenfunction.

(c) For the case A < 0, the general solution of the ODE in the eigenvalue problem is

also given by
X(l‘) = C’le\/j’\x + 026_\/338,

with X'(z) = C1v/—XeV = — Cy/=Xe~V=2*. The boundary conditions gives

Cy+Cy, =0,
Civ/=eV N — Cy/=Ne VA 4 (Cleml + 026_ml) =0,

then
—CovV =\ <eﬁl + eiﬁl) + h(Cy (—eﬁl + eiﬁl> =0.
Letting v/ —Al = p, there is
CovV—Acosh p+ Cohsinhpy =0 = v —Acoshpu+ hsinhpy =0

by nonzero Cy. Thus,

% = —tanh pu.

This equation has 0 or 2 nonzero real roots as illustrated below, if the roots exist (i.e.,
at u = 0, the slope of the straight line y = % is larger than the slope of y = — tanh(u))
then we denote p; = —pus < 0.

N
—tanhp
ek

Ho X




2
There is a unique negative eigenvalue A = — (%) corresponding to the two real roots.

Then, the eigenvalues and eigenfunctions are given by

2
)\n:_<%> ) n:172a37"'a

HEn En
l

Xp(x)=eT1%—e 7% n=1,23--.

In this case, Ay < 0 < Ay < A3 < ---. And the solution for the corresponding initial-
boundary value problem for the homogeneous heat equation will grow exponentially since
there is a term ¢1e_“2)‘1tX1(93) — +00 as t — +o0.

5 Solve the following boundary-initial value prob-
lems.

(1)

U = Uy, O<zxz<l, t>0,
w(0,t) =wuy, u(l,t) =uy, t>0,
u(z,0) =up, 0<z<I.
where ug, u; and uy are constants. After solving it, find the limit of u(z,t) as t — oo.

Show that the limit is a steady-state, i.e. a time-independent solution of the PDE and
B.C.

—1 -0
Solution. Since the B.C. is non-homogeneous, let w(z,t) = ulg 7 + uz? 0 = u +
x

7(u2 —uq) and u(x,t) = U(x,t) + w(x,t). The original problem now is transformed to

the problem for U(z,t) with homogeneous B.C.

U, = a’U,,, O<ax<l, t>0,
U(0,t) =0,U(l,t) =0, t >0,
U(x,0) = u(x,0) — w(zx,0) :uo—u1+§(u2—u1), 0<zx<l.

X" T'(t
Let U(z,t) = X(x) - T(t) then X((;)) = a2T((1)f) = —\. The eigenvalue problem is given
by

X"+ AX =0, 0<x<l,
X(0)=0,X(1) =0.

The eigenvalues are given by

2
M= () =12,

then the eigenfunctions are



Expand the solution as

Uz, t) = To(t)Xn(x)
and let ) .
O(x) =U(x,0) = > @, X,()
where

N l@(x)Xn(x)dx_ [N RS

! !
nrx Uy — U nrx
(uo—ul)/ sin 7; dz + 2 l ! xsin%dx)
0 0

[ —lcos(mn)  wug —uy I*(sin(mn) — 7n cos(wn)))

™ l m2n2

(ug — up)

™ 2

sin(mn) — 7;7; cos(m)>

Substituting above into the PDE, we have

[e.9]

Y T Xa(w) = a® Y (T()X[(2) = a® Y (ATt X))

n=1

By the B.C.,
> T(0)Xu(2) =) X, (x).
n=1 n=1

Multiply both sides by Xy (x),k =1,2,--- and integrate on [0, ], that is,

l 00 1 )
/0 Xi() > T (1) X (2)dz = /0 Xi(2)a? > (= AT (t) X (2))da

=S T /0 Xe(#) Xu(2)dz = 3 —Aa® T (1) /0 Xi(2) X, (2)dz
and

/0 Xi(2) > T (0) X, (2)dz = /0 Xi(2) Y @, X, (2)dx

=S 7.00) /0 Xe(#) Xn(2)dz = 3 @, /0 Xi(2) X (2)dz

where the order of series summation and integration can be exchanged because we already
know that the series is uniformly convergent.

b !
By the orthogonality / Xo(2) Xy (z)doe = 0, for all n # k, / Xi(z)Xp(x)de =0
a 0

s.t. Yk,
{T,g(t) = —az)\ka(t)
T (0) = Oy '
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Solving this initial value problem for the linear ODE, we obtain

Tn(t) = ®n6_a2>\nta n= 17 27 U

then U(z,t) =
Z 2 ((uo —uy) —1 — cos(mn) + (ug — u1>sin(ﬂn) —27T721 COS(Wn)) e_az(%ft sin @
— ™ m™>n l
Thus, u(z,t) =
°° 1—(=1)" —1)" nza)?
22(%_%)#“@%0( ) )e—< )% in 1T
vt ™m ™m l

T
+ Ui + T(UQ — ul).

For the limit of u(x,t) as t — oo, clearly U(z,t) — 0 as t — oo which leads to u(z,t) —

T
uy + 7(u2 — uq) as a steady-state.

(2)

U = AUy —hu+g, 0<z <l t>0,
u(0,t) =0, u(l,t) =0, t>0,
u(z,0) =0, O<z<l

where g and h are constants.

Solution. Let u(z,t) = X(z) - T(t) then X(z)T'(t) = a*X"(2)T(t) — hX(x)T(t) =

T (t X" T (¢ X"
azig(i) - X((;:)) —h = azjg(z> +h= X((::)) = — )\ since the PDE is non-homogeneous.
The eigenvalue problem is given by

X"+ AX =0, 0<x<l,
X(0)=0,X()=0. :

The eigenvalues are given by

then the eigenfunctions are

X, (x) = sin 5 n= 1,2,
Expand the solution as
uw,t) =Y T(t) Xo(x)
n=1
and let .
flo,t)=g="> folt)Xu(x)
n=1



where

flz, )X, (z)dz ¢ [ sin T
f = /0 _ /0 l ~ 2g9(1— cos(wn))'

[ @y ; i

0
Substituting above into the PDE, we have

an(a:)T' t
n=1

Mg

(0® X ()T (t) — hXon(2)T0(t) + fult))

n=1

NE

((=Aa® = h) X, (2) T, (1) + fult)) -

n=1

By the B.C., ®,, =0 and
> T,(0)X,(z) = 0.
n=1

Similar to 5.(1), multiplying both sides of each of the above equation by X (z),k =
1,2,---, integrating on [0, ], and using the orthogonality, we have V k,

Tp(t) = (= wa® — h)Ti(t) + fi(t),
Ti,(0) = 0.

Solving this initial value problem for the linear ODE, we obtain

¢ t
T,(t) = / 6(*)\na2,h)(t77')fn<7_>d7_ _ 2¢g(1 — cos(mn)) / A —h)(t-7) g
0 0

™

~ 2g(1 — cos(mn)) (_e(’\”C‘Zh)t 1 )

N ™ a2+ h + a2+ h
Then

e m™n (%) a2 +h (%)’ a2+h l
i 29(1— (1)) (1= (CEVa Ny
- sin ——
— ™m (@)2 a2+ h l
(3)
U = K (Ugy + yy), O<z<a O<y<b t>0,
w(0,y,1) = u(a,y,t) =0,
u(x,0,t) = u(z,b,t) =0,
u(z,y,0) = zy
Solution. Start with separation of variables by letting u(z,y,t) = X (2)Y (y)T'(t) s.t.
vy _Xe) Yy o X)) o Y
R X(x)  Y(y) - X(2) Y(y) ’
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where A and p are constants.

Solve the eigenvalue problems of X,Y and compute the double Fourier coefficients
Ciun, then solve the ODE about T,,,(t). These and the boundary conditions lead to the
following eigenvalue

X"x)+AX(z) =0, 0<zx<a, d Y'y)+ (n—NY(y) =0, 0<y<b,
X(0)=0, X(a)=0. * Y(0)=0, Y(b)=0.

The eigenvalues and eigenfunctions for (\,, X,,) are

2
/\n:(n_ﬂ> ) Xn(:L')ZSiH<@>, n=12,...

a a
The eigenvalues and eigenfunctions for (g, Y:,) are

2 2

Now, write u in a form of series
u(@,y,t) = > Y Xn(@) Yo (y) T ().
n=1 m=1
Then, by the initial condition we have
B = — . [nTTN . mwy)
xy ; mz:l Cp,n SID (_a ) sin <—b ,
where the double Fourier coefficients are determined by
4 (! nmx ! mmy 4ab
_ . . _ (m+n)
Crnn = l_2/0 x sin <T> d:L‘/O y sin <T> dy = (—1) "
A substitution of these yields the following ODE
Tr/n,n(t) + Mm,nk2Tm7n(t) - O’ m,n = 17 27 37 )
Tnn(0) = Crm-
The solution of the ODE is given by

2 2
Tm,n(t) = cm,ne*#m,nk% — <—1)(m+n)ib2€_(2*2+%>k27r2t.
mnim

Finally,
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6 Consider the initial-Neumann boundary value prob-
lem. ..

Consider the initial-Neumann boundary value problem

U = Uy, O<x<l, t>0,
uz(0,t) =0 =wu,(l,t), t>0,
u(x,0) = =, 0<z<l

Find the limit of u(z,t) as t — oo by inspecting the general solution formula obtained
by separation of variables. (You do not need to compute all the Fourier coefficients.)
Interpret your result physically; generalize it, without proof, to the case of general initial
value and higher spatial dimensions.

Solution. Assuming that u(z,t) = X (x)T(t), the initial-Neumann boundary value prob-
lem becomes
X'(z)  T'(x) _

X(@)T'(t) = a*X"(2)T(t) = X&)~ @) -\,

then we have two separated equations

X"(z)+AX(2) =0, 0<z<I,
T'(t) + a®\T(t) =0, >0,

and the initial conditions
X'(0)=0=X"(I).

With A > 0 required, the solution of ODE X" (z) + AX(z) =0,0 <z <l is
X(z) = CreV=2 4 Che V2,

The boundary conditions gives the eigenvalues and corresponding eigenfunctions

2
An:<?) ) n:071727'”7

Since T,,(t) = ¢n exp (— (?)2 t),

u(z,t) = iTn(t)Xn(x) = i_o:gzﬁn exp (— <$)2t) cos (?) :

We need to choose the coefficients ¢,, such that
= nmx
u(z,0) 3:1 Gn, COS 7 T
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There is

1 [
—/xdxzi, n =0,
L Jo 2

2 ! 20 ((-1)" -1
—/xcos<m>dx:M, n=123---.
0

{ l n2m2

¢n:

Hence, the solution of the original problem is

u(z,t) = % + i %exp <— (@)215) cos (nlﬂ> :

Physically, the B.C. means that there is no temperature difference at each end of the
interval [0, ] for all ¢, i.e., the total thermal energy is conserved in the interval. It implies
that temperature will approach a same steady value, that is, the average of the initial
temperature. Generally, in a higher spatial dimension, we have

tlg(r)louxt |Q|/ u(x,0)d

7 Solve the Cauchy problem for the heat equation. .. Show
that u decays as ¢t —+ oo and find the decay rate.
Explain, physically, why u decays as t — oc.

Solve the Cauchy problem for the heat equation

Uy — a*Uye = 0, 1 € (—00,+00), >0,
u(z,0) = ¢(z), € (—00,+00),

where

o(r) = {1’ el <1,

0, if |z| > 1.

Show that u decays as t — oo and find the decay rate. Explain, physically, why u decays
as t — oo.

Solution. The bounded solution to the Cauchy problem is given by

) = [ :O o= (— (5”4;2?2> de=sm | H(€) exp (— <“””4;2§)2) .

Clearly, with an arbitrary fixed finite x,

lim u(z,t) = lim exp )d¢ =0,

1 ' (z —¢)?
i = 1i — d¢ < li
t—o0 ’ t—oo 2aq+/ 7t /;1 P ( 4a’t é- tiglo 20/
Namely, u decays as t — 0o. The (polynomial) decay rate as t — oo is 1/2 given by

the part —— Physically, this means that finite initial thermal energy between

a t tl/?
[—1, 1] needs to spread to infinity far, thus bringing a distribution decaying to 0 in the
whole space as t — oo.
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8 (Symmetry of heat equation)

Let u be the bounded solution of the Cauchy problem 7.(4) with a general initial value.
Show that if the initial value ¢ is even, then so is u in x; likewise, if ¢ is odd, then so is
u in x. Hint: either use the explicit solution formula or use the maximum principle for
the Cauchy problem.

Proof. Consider the explicit solution formula

400 1 1 (SC o 5)2
we.t) = [ o6t o= [ oo (<U ) ag
where G(x,t;§) = 2a\1/ﬁ exp (—%2?2) and it is not hard to see that

—+00 —+00

¢(§)G(Jf,t7f)d§ - ¢(§)G(Jf,t, _§>d§

for arbitrary ¢.
If the initial ¢ is even, then with ¢(§)G(—x,t;&) = ¢(=£)G(x,t; =€) = ¢(§)G(x,t; =€),

+o0 “+oo

u(=w,t) = P(§)G(—x,t;£)dS = ¢(§)G(x,t; =€) = u(z,1)

for all ¢. Thus, u(zx,t) is also even in z.
If the initial ¢ is odd, then with ¢(&)G(—z,t;&) = ¢(—&)G(x,t; —&) = —p(&)G(x, t; —&),

400 400
u(—x,1) = mamﬂm@&:—/¢@Gmme&>mmw

o

for all ¢. Thus, u(x,t) is also odd in z.

9 (Black-Scholes equation)

Consider the terminal value problem for the Black-Scholes equation

ov. 1, ,0%V ov
z - - _ = T
at+205852+7"585 rV=0 >0 0<t<T,

V(5,T) = ¢(5), S >0,

(5)

where S is the price of a stock (as independent variable), V' the call option value (as
the dependent variable), o the volatility of the stock, r the risk-free interest rate, T' the
expiration day of the option. This is designed to show that this terminal value problem
can be transformed to the Cauchy problem for the heat equation and therefore (5) can
be solved explicitly.
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(1)

Introduce new variables
S=Ke", t=T-1/(c0%)2),

where the constant K is the striking price. Let v(x,7) = V(S,t). Show that

ov 0% (27’ B 1) ov  2r

a7 oa2

— — 0.

o2 or o2

Solution. Since oy . 92V oV
- = 2 2_ I R
5 205 552 rSaS—i-?’V

and )
S:Kex,t:T—%T élen(%), T:@,
there are
ovV. ov Ovdx Ovor 10v
95 95 o205 9705 Sow
ovV. v Ovdr Ovox o? v
9 ol oot awol 200
O’V 0 [10v 0 0x (10v 1ov 10 1 dv
@:%(§%> ~ 9208 (5%) T S20r  S2012  S%0x
Thus

201 2
o? Qv 1 ,0% 1 ,0v 8v+

= 0°— 4+ —0°— —r—+ 10

2 Ot 2 022 2 Oz ox

ov 0% <2r B 1) ov  2r

o 1La (1o 1oy 1o
4 S20x2  S?20zx "

T or T2

— — — —.
o2 or o2

(2)
Choose constants o and  such that
uw(z, ) = exp(ax + B1)v(z,T)

satisfies the heat equation
ou  du
or  0x?

Solution. The PDE for u(z, 7) can be given by

ou  J*u ou
E = @ -+ A% -+ Bu
where we want A = B = 0 by choosing o and 8. With v(z, 7) = u(x, 7) exp(—ax — 87),
Ov  Quexp(—ax — B7)
or or
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ou oexp(—azx — BT
= exp(—ax — ﬁT)E +u P( 5 b7)

= exp(—ax — ﬂT)% + u(—p) exp(—ax — p7),

Ov _ duexp(—ax — 1)
Oz Oz

ou Jdexp(—ax — BT
= exp(—ax — ﬁT)a—x +u p( pe p7)

= exp(—ax — 57)% + u(—a) exp(—az — A7),

2
2
= (—a)exp(—azr — 57)% +exp(—az — BT)%
+ (—a) exp(—ax — 57)@ +u(—a)*exp(—azx — fr).

Ox
Then, by substituting,

exp(—ax — 67’)% + u(—pB) exp(—azx — B7)
ou

= (—a)exp(—ax — BT)%

+ exp(—ax — 67)% + (—a) exp(—ax — 57’)2—2 + u(—a)? exp(—ax — B7)

+ (g — 1) (exp(—ozx - ﬁT)% + u(—a) exp(—ax — ﬁT)) - %u exp(—ax — 7)

then dividing exp(—ax — 87)

P pu(=8) = () 2+ T4 () 2 (a4 (27’ - 1) (a—“ ¥ u(—a)> _r

ox o2 ox o2
ou  0%u ou
= —=——+A—+1B
or 8x2+ 8x+ Y
where 5
A=—20+= -1,
o
2 2
B=ﬁ+a2—a—z~l—a——z.
o o
Set

2r T
“2a+5-1=0 =a=—-1/2
r 2 r 2r r 2r r2 r 1
——12)—(——12)— (——12)——:0 5=+ 42
B_I—(O'z / o2 / 02+ o / o2 p a4+02+4
s.t u satisfies the heat equation.
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(3)

Now solve (5) with ¢(S) = max(S — K,0) (European call). Express your answer in terms
of the distribution function of the normal distribution

B(y) = \/% /_ e €124¢.

Solution.

+o0 +00
w(z,t) = / B(E)G (w1 €)dE — / explaz) max(Ke® — K,0)G(x, #: £)d¢
The solution is

u(z,t) = exp (a:v + %0’27'042) N (

T+ 027a>

oNT

Y 2
Nw) = o= | e

is the cumulative distribution function of normalized normal distribution N(0,1).
Finally, we can perform backward substitutions from u(x,7) to V(95,1):

V(S,t) = SN(dy) — Ke " T=IN(d,)

where

where
1 (r+l02)(Tft) 1 (T*lUQ)(T*t)
dy = w24 Cdy = m (24 .
o(T —t) K o(T —t) K

10 (Application of maximum principles)

Let u be a smooth solution of the initial-boundary value problem

Uy — @*Uyy = 0, z e (0,1), t>0,
u(0,t) =0=u(l,t), t>0, (6)
u(w.0) = o), we .l

where ¢ > 0 but is not identically equal to zero on [0, ], satisfying ¢ < 0 on (0, ).

(1) Prove that u(z,t) > 0 for (z,t) € (0,1) x (0,00).
Hint: first use the weak minimum principle and then the strong minimum principle.

Proof. Denoting the parabolic interior Dy = (0,1) x (0, 00) = 2 (0, 00) and the parabolic
boundary I'z = (02 x [0,00)) N (2 x {0}), on Dr u(x,t) satisfies

u < a®Au.
According to the weak minimum principle,

minu = minu = u(0,¢) = 0.
Dr I'p
Then, with the strong minimum principle, once the u(x,t) value takes the minimum 0
on Dy, then u is a constant function, which is a contradiction. That is, u(z,t) > 0 for
(ZL’, t) S DT.
|
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(2) Prove that u,(x,t) <0 for (x,t) € (0,1) x (0, 00).

Hint: Let w = u,; first find the initial-boundary problem that w solves, then apply the
maximum principles to w.

Proof. Let w = uy, then

W= Upy = Wy = A Wiy

According to the strong maximum principle, with w(z,0) = a*u..(x,0) = a*¢” < 0 on
(0,1) (¢" <0 on [0,!] maybe), once the w value takes the maximum 0 on Dy, then w is
a constant function, which is a contradiction. That is, w(z,t) < 0 for (z,t) € Dr.

(3) Draw the graph of v vs  and put arrows on the graph to indicate the
behavior of the graph as ¢ increases. ..

Draw the graph of u vs x and put arrows on the graph to indicate the behavior of the
graph as t increases. Can you predict the behavior without proving (2) rigorously? What
if the initial value changes its concavity?

0 l x

The behavior of u as t increases if the initial value is concave down

100 0.8 0.6
X

A Numerical Simulation of u, ¢” < 0 on (0,1)
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For each fixed x, as t increases u decrease, that is, u; < 0, which can be predicted
rigorously by the graph. If the initial value changes its concavity, i.e ¢” > 0 may appear,
the result u; < 0 does not hold.

0| l z

The behavior of u as t increases if the initial value changes its concavity

A Numerical Simulation of u, ¢” > 0 on Somewhere (0,1)

11 Consider the solution u(x,?) f+oo<b G(x,t;£)dE
of the Cauchy problem for the heat equation...

Consider the solution u(x,t) f oo o(§)G(x,t;£)dE of the Cauchy problem for the heat
equation. If ¢ is bounded on R and has a jump discontinuity at point x, prove that

lim u(z,t) = = (6(z — 0) + (x +0))

t—0+ 2

Proof. Let
+o0 +oo +o0o

u(z,t) = P(§)G(x,t;6)dE = ¢~ (§)G(x, 15 €)dE + N SIECRAINS

where ¢ = ¢~ + o™,

ey O, E<a—e o Joo g<a
¢<§>—{0, £> 2 ,and¢(£)—{¢(§), f>ote’
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as € — 0, i.e. approaching z in the directions of 0~ or 0" respectively. Then, applied the
weak convergence of fundamental solution,

+oo
tm [ 6 (@6 0 = 07 (e — ) = 072 - 0)
tim [ GHOG £ I = 9Ha+ 9 = 6 (r+0)

Hence
lim u(z,f) = %(qﬁ(m —0) + ¢z +0)).

t—0t

12 (Backward uniqueness of solving the heat equa-
tion)

We have already known the ill-posedness of solving the heat equation backwards in time.
But, perhaps surprisingly, the backward heat equation has uniqueness, as we will prove
in this exercise.

Let u be a smooth solution of

U = @ Ugy, 0<z<l, t<0),
u(0.1) = 0, u(l, 1) =0, (t <0),
u(x,0) =0, (0<z<l).

Prove that u is identically equal to zero on [0,[] for all ¢ < 0. To this end, recall the
energy that we have defined before

E(t) = /Ol w?(z,t)dx.

We just need to prove that E(t) is identically equal to zero for all t < 0. We argue by
contradiction by assuming that there exists ¢y < 0 such that E(¢y) > 0. By continuity,
there exists a t; € (ty,0) such that E is positive on [tg,?;1] and is equal to zero at t;.
Without loss of generality, assume ¢; = 0. Now proceed as follows

(1)
Prove

I
E"(t) = 4a2/ u? (z,t)dz.
0

!
d (/ u2(:v,t)dx) } } .
E'(t) = 0 = / uuy + wudr = 2/ uudr = 2a2/ Uy d .
0 0 0
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Then

!
d <2a2/ uumdx>
E”<t> — 0

dt

UpUgy + UlgprdT
l
u? dx + 2a* Ul d
xTxT xxt
0
! l
u? dx + g ‘lx:o — 2a2/ Uy Uy AT
0
!
w2 dx + uu ]l —uu’l +2a® | ugpudz
xx xt |x=0 Wt =0 xx Wt
0
l
2 4 2
uy,dxr + 2a / us,dx
0

_ gh 2
=4a us,dz

where uuy, Kc:o =0 and u,u, ‘ézo = 0 are given by the B.C..

[ |
(2)
Prove Cauchy-Schwarz inequality
! 3 /ol 3
x| < </ fZ(x)dx) (/ gz(x)dx) :
0 0
Hint: the quadratic polynomial in r defined by
!
[ (@ +rgta)da
0
is always non-negative for all r; think about its discriminant.
Proof. Let
!
P(r) = [ (@) + ro(a) ds
0
then
Vr, P(r)>0.
! !
Noticed that P(r / ) da + QT/ f(@)g(x)dx +r / (g(z))* dz is a quadratic
0 0

function with / (g(2))*dz > 0 s.t.

A= (2 /Olf(x)g(m)dx>

2

4 [ ytar [ gt <o
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That is,

(/Olf@)g(@df)Q < /Ol (g(m))de/ol (f(x))* da,

or in a form of

! ! 1
| s@gtas] < \/ / g?(x)dx\/ | £
0 0 0
[ |
(3)
Use the formula for £’ and E” to prove
(E")? < EE", t€ lty,0).
Proof.
I 2 1 2 l l
(E")? = (2(12/ uumdx) = 4q* (/ uumdx) < 4a4/ uldx / u? dr = EE".
0 0 0 0
[ |
(4)
Prove that
(InE(t))" >0, telto,0).
Proof.
E / E'E — (El 2
meoy - (5) =T 20

since (E')? < E"E.

[ |

(5)

Prove that (4) contradicts the assumption that u(z,0) =0 (E(0) = 0).

Proof. Suppose exist ty < 0 s.t. E is positive on [tg,0) and u(z,0) =0 (E(0) = 0).
By (InE(t))” > 0, In E(t) is a convex function. For k € [0,1], with the property of
convexity,

In(E (kto+ (1 — k) - 0)) < kIn(E(ty)) + (1 — k) In(E(0)) = In (E*(to) E'*(0))

= E (kty) < E*(tg) E*%(0) = 0,

which is a contradiction.
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