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1 (Transmission conditions) Consider a surface S that
separates two media with different thermal con-
ductivities k1 and k2 . . .

Consider a surface S that separates two media with different thermal conductivities k1
and k2. Let u1 and u2 be the temperature in the media. Suppose the media are in
intimate contact along the surface S so we have

u1 = u2 on S. (1)

Prove that on S,
−k1

∂u1

∂n = −k2
∂u2

∂n , (2)

where n is the unit normal vector field of the surface S. ((1) and (2) are called transmission
conditions.) Hint: Take an arbitrary patch ∆S of S, and think about the rate at which
thermal energy crosses the patch in the direction of the normal.

k1 k2
S

Proof. Consider a small arbitrary area element ∆S on the surface S. The heat flux across
∆S is given by Fourier’s law

q1 = −k1∇u1, q2 = −k2∇u2,

where q1,q2 are the local heat flux densities. Then, the thermal energy across the whole
S should be conserved which implies that along the normal of each ∆S

F1 = q1 · n = −k1∇u1 · n, F2 = q2 · n = −k2∇u2 · n.

That is, F1 = F2 gives −k1∇u1 · n = −k2∇u2 · n. Denoted n = (nx, ny, nz) as the unit
normal vector of ∆S, there is

−k1∇u1 · n = −k1

(
∂u1

∂x
,
∂u1

∂y
,
∂u1

∂z

)
· (nx, ny, nz) ,

−k2∇u2 · n = −k2

(
∂u2

∂x
,
∂u2

∂y
,
∂u2

∂z

)
· (nx, ny, nz) ,

which means the desired transmission condition

−k1
∂u1

∂n = −k2
∂u2

∂n .

■
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2 (Effective boundary condition on a coated body)
Let a body Ω1 (space shuttle or turbine engine) be thermally insulated by a thin coating
Ω2 of thickness δ; assume the outer boundary of the coating is subject to a high exterior
temperature H. Let u1 be the temperature function in Ω1 and u2 be that in Ω2 that
satisfies 1.(1) on ∂Ω1. Let the thermal conductivities of the body and the coating be k1
and k2, respectively. Prove that on the boundary ∂Ω1 of the body, we have approximately
Robin boundary condition

k1
∂u1

∂n +
k2
δ
(u1 −H) = 0, (3)

where n is the unit outer normal vector field of ∂Ω1. (Equation (3) is called the effective
boundary condition; its significance is that with it we do not need to solve, analytically or
numerically, the heat equation inside the coating—we just need to solve it inside the body
with (3) as the B.C.) To insulate the body well, what should be the scaling relationship
of k2 and δ? Hint: start with 1.(2); fix a point x on ∂Ω1, and define f(τ) = u2(x+ τn).
Then perform a Taylor expansion of f at 0.

Ω1 Ω2

Hδ

Proof. For a point x on ∂Ω1, define f(τ) = u2(x + τn) where τ varies from 0 to δ and
f satisfies 1-dimension heat equation k2f

′′(τ) = 0. The Taylor expansion of f at 0 gives
that

f(τ) =
∞∑
n=0

f (n)(0)

n!
(τ − 0)n = f(0) + f ′(0)τ +O(τ 2) + · · ·

and f(0) = u2(x) = u1(x), f ′(0) = ∇u2(x) · n = ∂u2(x)/∂n. After substituting,

f(τ) = u2(x) + ∂u2(x)/∂n · τ

which implies
∂u2

∂n ≈ H − u1

δ

by the small δ and boundary condition f(δ) = H. Then, on ∂Ω1 we have the transmission
condition

−k1
∂u1

∂n = −k2
∂u2

∂n ⇒ k1
∂u1

∂n =
k2(H − u1)

δ
.

Thus
k1

∂u1

∂n +
k2
δ
(u1 −H) = 0.

■
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3 Solve the following eigenvalue problems.
(1) {

X ′′(x) + λX(x) = 0, −l < x < l,

X ′(−l) = 0, X(l) = 0.

Solution. Let ξ = x+ l and X(x) = X(ξ − l) = Y (ξ) s.t.{
Y ′′(ξ) + λY (ξ) = 0, 0 < ξ < 2l,

Y ′(0) = 0, Y (2l) = 0.

The eigenvalues and eigenfunctions are given by

λn =

(
(n+ 1

2
)π

2l

)2

, n = 0, 1, 2, · · ·

and
Yn(ξ) = cos

(
(n+ 1

2
)π

2l
ξ

)
, n = 0, 1, 2, · · · .

The solution of the original problem is

λn =

(
(n+ 1

2
)π

2l

)2

, n = 0, 1, 2, · · ·

and
Xn(x) = cos

(
(n+ 1

2
)π

2l
(x+ l)

)
, n = 0, 1, 2, · · · .

(2) {
X ′′(x) + λX(x) = 0, 0 < x < l,

X(x) is a periodic function with period l.

Solution. Since X(x) is a periodic function with period l, X(0) = X(l), X ′(0) = X ′(l). By
the general solution of the ODE (maybe in an exponential form with imaginary numbers),

X(x) = C1e
√
−λx + C2e

−
√
−λx, X ′(x) = C1

√
−λe

√
−λx − C2

√
−λe−

√
−λx

and the boundary condition,{
C1 + C2 = C1e

√
−λl + C2e

−
√
−λl,

C1

√
−λ− C2

√
−λ = C1

√
−λe

√
−λl − C2

√
−λe−

√
−λl,

that is, C1

(
1− e

√
−λl
)
+ C2

(
1− e−

√
−λl
)
= 0,

C1

(
1− e

√
−λl
)
+ C2

(
e−

√
−λl − 1

)
= 0.
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For nonzero solution {C1, C2}, one must have∣∣∣∣1− e
√
−λl 1− e−

√
−λl

1− e
√
−λl e−

√
−λl − 1

∣∣∣∣ = 0,

then 2 = e
√
−λl + e−

√
−λl i.e. cosh

(√
−λl

)
= 1 which has complex solutions

√
−λl = 2iπk, k ∈ Z.

This leads to
λk = −

(
2πk

l
i

)2

, k ∈ Z,

with λ = 0 (the equation reduces to X ′′(x) = 0 here), k = 0, X(x) = a0x+ b0, and λ ̸= 0,
k2 = (−k)2, there is

λn =

(
2πn

l

)2

, n = 0, 1, 2, · · · .

The corresponding eigenfunctions are given by

Xn(x) = C1e
2iπnx/l + C2e

−2iπnx/l = an cos
(
2πnx

l

)
+ bn sin

(
2πnx

l

)
, n = 0, 1, 2, · · ·

where an, bn are constants to be determined.

4 Find the eigenvalues of the following problem graph-
ically. . .

Find the eigenvalues of the following problem graphically
X ′′ + λX = 0, x ∈ (0, l),

X(0) = 0,

X ′(l) + hX(l) = 0

where h is a nonzero constant that may not be positive. Note that negative eigenvalues
may appear. In this case, what is the behavior of the solution for the corresponding
initial-boundary value problem for the homogeneous heat equation?

Solution.
(a) For the case λ > 0, we have the general solution of the ODE in the eigenvalue problem

X(x) = C1 sin(
√
λx) + C2 cos(

√
λx).

That is, by the boundary condition X(0) = 0,

X(x) = sin(
√
λx).

And the boundary condition X ′(l) + hX(l) = 0 leads to
√
λ cos(

√
λl) + h sin(

√
λl) = 0,
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i.e.
µ

hl
= − tanµ, where µ =

√
λl.

Then λn =
(µn

l

)2
n = 1, 2, 3, · · · ,

Xn(x) = sin µnx

l
n = 1, 2, 3, · · · ,

are infinitely many eigenvalues and eigenfunctions of this problem.

(b) For the case λ = 0, if h ̸= −1/l, λ = 0 can not be an eigenvalue. Or if h = −1/l,
λ = 0 is the eigenvalue and X(x) = x is the eigenfunction.

(c) For the case λ < 0, the general solution of the ODE in the eigenvalue problem is
also given by

X(x) = C1e
√
−λx + C2e

−
√
−λx,

with X ′(x) = C1

√
−λe

√
−λx − C2

√
−λe−

√
−λx. The boundary conditions gives{

C1 + C2 = 0,

C1

√
−λe

√
−λl − C2

√
−λe−

√
−λl + h

(
C1e

√
−λl + C2e

−
√
−λl
)
= 0,

then
−C2

√
−λ
(
e
√
−λl + e−

√
−λl
)
+ hC2

(
−e

√
−λl + e−

√
−λl
)
= 0.

Letting
√
−λl = µ, there is

C2

√
−λ coshµ+ C2h sinhµ = 0 ⇒

√
−λ coshµ+ h sinhµ = 0

by nonzero C2. Thus,
µ

hl
= − tanhµ.

This equation has 0 or 2 nonzero real roots as illustrated below, if the roots exist (i.e.,
at µ = 0, the slope of the straight line y =

µ

hl
is larger than the slope of y = − tanh(µ))

then we denote µ1 = −µ2 < 0.
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There is a unique negative eigenvalue λ = −
(µ
l

)2
corresponding to the two real roots.

Then, the eigenvalues and eigenfunctions are given byλn = −
(µn

l

)2
, n = 1, 2, 3, · · · ,

Xn(x) = e
µn
l
x − e−

µn
l
x, n = 1, 2, 3, · · · .

In this case, λ1 < 0 < λ2 < λ3 < · · · . And the solution for the corresponding initial-
boundary value problem for the homogeneous heat equation will grow exponentially since
there is a term ϕ1e

−a2λ1tX1(x) → +∞ as t → +∞.

5 Solve the following boundary-initial value prob-
lems.

(1) 
ut = a2uxx, 0 < x < l, t > 0,

u(0, t) = u1, u(l, t) = u2, t > 0,

u(x, 0) = u0, 0 < x < l.

where u0, u1 and u2 are constants. After solving it, find the limit of u(x, t) as t → ∞.
Show that the limit is a steady-state, i.e. a time-independent solution of the PDE and
B.C.

Solution. Since the B.C. is non-homogeneous, let w(x, t) = u1
x− l

0− l
+ u2

x− 0

l − 0
= u1 +

x

l
(u2 − u1) and u(x, t) = U(x, t) + w(x, t). The original problem now is transformed to

the problem for U(x, t) with homogeneous B.C.
Ut = a2Uxx, 0 < x < l, t > 0,

U(0, t) = 0, U(l, t) = 0, t > 0,

U(x, 0) = u(x, 0)− w(x, 0) = u0 − u1 +
x

l
(u2 − u1), 0 < x < l.

Let U(x, t) = X(x) · T (t) then X ′′(x)

X(x)
=

T ′(t)

a2T (t)
≡ −λ. The eigenvalue problem is given

by {
X ′′ + λX = 0, 0 < x < l,

X(0) = 0, X(l) = 0.

The eigenvalues are given by

λn =
(nπ

l

)2
, n = 1, 2, · · ·

then the eigenfunctions are

Xn(x) = sin nπx

l
, n = 1, 2, · · · .
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Expand the solution as

U(x, t) =
∞∑
n=1

Tn(t)Xn(x)

and let

Φ(x) = U(x, 0) =
∞∑
n=1

ΦnXn(x)

where

Φn =

ˆ l

0

Φ(x)Xn(x)dx
ˆ l

0

(Xn(x))
2 dx

=

ˆ l

0

(
u0 − u1 +

x

l
(u2 − u1)

)
sin nπx

l
dx

l

2

=
2

l

(
(u0 − u1)

ˆ l

0

sin nπx

l
dx+

u2 − u1

l

ˆ l

0

x sin nπx

l
dx
)

=
2

l

(
(u0 − u1)

l − l cos(πn)
πn

+
u2 − u1

l

l2(sin(πn)− πn cos(πn))
π2n2

)
= 2

(
(u0 − u1)

1− cos(πn)
πn

+ (u2 − u1)
sin(πn)− πn cos(πn)

π2n2

)
.

Substituting above into the PDE, we have
∞∑
n=1

T ′
n(t)Xn(x) = a2

∞∑
n=1

(Tn(t)X
′′
n(x)) = a2

∞∑
n=1

(−λnTn(t)Xn(x)).

By the B.C.,
∞∑
n=1

Tn(0)Xn(x) =
∞∑
n=1

ΦnXn(x).

Multiply both sides by Xk(x), k = 1, 2, · · · and integrate on [0, l], that is,
ˆ l

0

Xk(x)
∞∑
n=1

T ′
n(t)Xn(x)dx =

ˆ l

0

Xk(x)a
2

∞∑
n=1

(−λnTn(t)Xn(x))dx

⇒
∞∑
n=1

T ′
n(t)

ˆ l

0

Xk(x)Xn(x)dx =
∞∑
n=1

−λna
2Tn(t)

ˆ l

0

Xk(x)Xn(x)dx

and ˆ l

0

Xk(x)
∞∑
n=1

Tn(0)Xn(x)dx =

ˆ l

0

Xk(x)
∞∑
n=1

ΦnXn(x)dx

⇒
∞∑
n=1

Tn(0)

ˆ l

0

Xk(x)Xn(x)dx =
∞∑
n=1

Φn

ˆ l

0

Xk(x)Xn(x)dx

where the order of series summation and integration can be exchanged because we already
know that the series is uniformly convergent.

By the orthogonality
ˆ b

a

Xn(x)Xm(x)dx = 0, for all n ̸= k,
ˆ l

0

Xk(x)Xn(x)dx = 0

s.t. ∀ k, {
T ′
k(t) = −a2λkTk(t)

Tk(0) = Φk
.
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Solving this initial value problem for the linear ODE, we obtain

Tn(t) = Φne
−a2λnt, n = 1, 2, · · ·

then U(x, t) =

∞∑
n=1

2

(
(u0 − u1)

1− cos(πn)
πn

+ (u2 − u1)
sin(πn)− πn cos(πn)

π2n2

)
e−a2(nπ

l )
2
t sin nπx

l
.

Thus, u(x, t) =
∞∑
n=1

2

(
(u0 − u1)

1− (−1)n

πn
+ (u2 − u1)

(−1)n

πn

)
e−(

nπa
l )

2
t sin nπx

l

+ u1 +
x

l
(u2 − u1).

For the limit of u(x, t) as t → ∞, clearly U(x, t) → 0 as t → ∞ which leads to u(x, t) →
u1 +

x

l
(u2 − u1) as a steady-state.

(2) 
ut = a2uxx − hu+ g, 0 < x < l, t > 0,

u(0, t) = 0, u(l, t) = 0, t > 0,

u(x, 0) = 0, 0 < x < l.

where g and h are constants.

Solution. Let u(x, t) = X(x) · T (t) then X(x)T ′(t) = a2X ′′(x)T (t) − hX(x)T (t) ⇒
T ′(t)

a2T (t)
=

X ′′(x)

X(x)
− h ⇒ T ′(t)

a2T (t)
+ h =

X ′′(x)

X(x)
≡ −λ since the PDE is non-homogeneous.

The eigenvalue problem is given by{
X ′′ + λX = 0, 0 < x < l,

X(0) = 0, X(l) = 0.
.

The eigenvalues are given by

λn =
(nπ

l

)2
, n = 1, 2, · · ·

then the eigenfunctions are

Xn(x) = sin nπx

l
, n = 1, 2, · · · .

Expand the solution as

u(x, t) =
∞∑
n=1

Tn(t)Xn(x)

and let

f(x, t) = g =
∞∑
n=1

fn(t)Xn(x)
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where

fn(t) =

ˆ l

0

f(x, t)Xn(x)dx
ˆ l

0

(Xn(x))
2 dx

=

g

ˆ l

0

sin nπx

l
dx

l

2

=
2g(1− cos(πn))

πn
.

Substituting above into the PDE, we have
∞∑
n=1

Xn(x)T
′
n(t) =

∞∑
n=1

(
a2X ′′

n(x)Tn(t)− hXn(x)Tn(t) + fn(t)
)

=
∞∑
n=1

(
(−λa2 − h)Xn(x)Tn(t) + fn(t)

)
.

By the B.C., Φn = 0 and
∞∑
n=1

Tn(0)Xn(x) = 0.

Similar to 5.(1), multiplying both sides of each of the above equation by Xk(x), k =
1, 2, · · · , integrating on [0, l], and using the orthogonality, we have ∀ k,{

T ′
k(t) = (−λka

2 − h)Tk(t) + fk(t),

Tk(0) = 0.

Solving this initial value problem for the linear ODE, we obtain

Tn(t) =

ˆ t

0

e(−λna2−h)(t−τ)fn(τ)dτ =
2g(1− cos(πn))

πn

ˆ t

0

e(−λna2−h)(t−τ)dτ

=
2g(1− cos(πn))

πn

(
−e(−λna2−h)t

λna2 + h
+

1

λna2 + h

)
.

Then

u(x, t) =
∞∑
n=1

2g(1− cos(πn))
πn

(
−e(−(

nπ
l )

2
a2−h)t(

nπ
l

)2
a2 + h

+
1(

nπ
l

)2
a2 + h

)
sin nπx

l

=
∞∑
n=1

2g(1− (−1)n)

πn

1− e
−
(
(nπ

l )
2
a2+h

)
t(

nπ
l

)2
a2 + h

 sin nπx

l
.

(3) 
ut = k2(uxx + uyy), 0 < x < a, 0 < y < b, t > 0,

u(0, y, t) = u(a, y, t) = 0,

u(x, 0, t) = u(x, b, t) = 0,

u(x, y, 0) = xy.

Solution. Start with separation of variables by letting u(x, y, t) = X(x)Y (y)T (t) s.t.

T ′(t)

k2T (t)
=

X ′′(x)

X(x)
+

Y ′′(y)

Y (y)
= −µ,

X ′′(x)

X(x)
= −Y ′′(y)

Y (y)
− µ = λ,
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where λ and µ are constants.
Solve the eigenvalue problems of X,Y and compute the double Fourier coefficients

Cmn, then solve the ODE about Tmn(t). These and the boundary conditions lead to the
following eigenvalue{
X ′′(x) + λX(x) = 0, 0 < x < a,

X(0) = 0, X(a) = 0.
and

{
Y ′′(y) + (µ− λ)Y (y) = 0, 0 < y < b,

Y (0) = 0, Y (b) = 0.

The eigenvalues and eigenfunctions for (λn, Xn) are

λn =
(nπ

a

)2
, Xn(x) = sin

(nπx
a

)
, n = 1, 2, . . .

The eigenvalues and eigenfunctions for (µm,n, Ym) are

µm,n =

(
n2

a2
+

m2

b2

)
π2, Ym(y) = sin

(mπy

b

)
, m = 1, 2, . . .

Now, write u in a form of series

u(x, y, t) =
∞∑
n=1

∞∑
m=1

Xn(x)Ym(y)Tm,n(t).

Then, by the initial condition we have

xy =
∞∑
n=1

∞∑
m=1

cm,n sin
(nπx

a

)
sin
(mπy

b

)
,

where the double Fourier coefficients are determined by

cm,n =
4

l2

ˆ l

0

x sin
(nπx

a

)
dx
ˆ l

0

y sin
(mπy

b

)
dy = (−1)(m+n) 4ab

mnπ2
.

A substitution of these yields the following ODE{
T ′
m,n(t) + µm,nk

2Tm,n(t) = 0, m, n = 1, 2, 3, · · · ,
Tm,n(0) = cm,n.

The solution of the ODE is given by

Tm,n(t) = cm,ne
−µm,nk2t = (−1)(m+n) 4ab

mnπ2
e
−
(

n2

a2
+m2

b2

)
k2π2t

.

Finally,

u(x, y, t) =
∞∑
n=1

∞∑
m=1

(−1)(m+n) 4ab

mnπ2
e
−
(

n2

a2
+m2

b2

)
k2π2t sin

(nπx
a

)
sin
(mπy

b

)
.
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6 Consider the initial-Neumann boundary value prob-
lem. . .

Consider the initial-Neumann boundary value problem
ut = a2uxx, 0 < x < l, t > 0,

ux(0, t) = 0 = ux(l, t), t > 0,

u(x, 0) = x, 0 < x < l.

Find the limit of u(x, t) as t → ∞ by inspecting the general solution formula obtained
by separation of variables. (You do not need to compute all the Fourier coefficients.)
Interpret your result physically; generalize it, without proof, to the case of general initial
value and higher spatial dimensions.

Solution. Assuming that u(x, t) = X(x)T (t), the initial-Neumann boundary value prob-
lem becomes

X(x)T ′(t) = a2X ′′(x)T (t) ⇒ X ′′(x)

X(x)
=

T ′(x)

a2T (x)
= −λ,

then we have two separated equations{
X ′′(x) + λX(x) = 0, 0 < x < l,

T ′(t) + a2λT (t) = 0, t > 0,

and the initial conditions
X ′(0) = 0 = X ′(l).

With λ > 0 required, the solution of ODE X ′′(x) + λX(x) = 0, 0 < x < l is

X(x) = C1e
√
−λx + C2e

−
√
−λx.

The boundary conditions gives the eigenvalues and corresponding eigenfunctions

λn =
(nπ

l

)2
, n = 0, 1, 2, · · · ,

Xn(x) = cos
(nπx

l

)
, n = 0, 1, 2, · · · .

Since Tn(t) = ϕn exp
(
−
(nπa

l

)2
t

)
,

u(x, t) =
∞∑
n=1

Tn(t)Xn(x) =
∞∑
n=1

ϕn exp
(
−
(nπa

l

)2
t

)
cos
(nπx

l

)
.

We need to choose the coefficients ϕn such that

u(x, 0) =
∞∑
n=1

ϕn cos
(nπx

l

)
= x.
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There is

ϕn =


1

l

ˆ l

0

xdx =
l

2
, n = 0,

2

l

ˆ l

0

x cos
(nπx

l

)
dx =

2l ((−1)n − 1)

n2π2
, n = 1, 2, 3, · · · .

Hence, the solution of the original problem is

u(x, t) =
l

2
+

∞∑
n=1

2l ((−1)n − 1)

n2π2
exp

(
−
(nπa

l

)2
t

)
cos
(nπx

l

)
.

Physically, the B.C. means that there is no temperature difference at each end of the
interval [0, l] for all t, i.e., the total thermal energy is conserved in the interval. It implies
that temperature will approach a same steady value, that is, the average of the initial
temperature. Generally, in a higher spatial dimension, we have

lim
t→∞

u(x, t) =
1

|Ω|

ˆ
Ω

u(x, 0)dx.

7 Solve the Cauchy problem for the heat equation. . . Show
that u decays as t → ∞ and find the decay rate.
Explain, physically, why u decays as t → ∞.

Solve the Cauchy problem for the heat equation{
ut − a2uxx = 0, x ∈ (−∞,+∞), t > 0,

u(x, 0) = ϕ(x), x ∈ (−∞,+∞),
(4)

where

ϕ(x) =

{
1, if |x| ≤ 1,

0, if |x| > 1.

Show that u decays as t → ∞ and find the decay rate. Explain, physically, why u decays
as t → ∞.

Solution. The bounded solution to the Cauchy problem is given by

u(x, t) =

ˆ +∞

−∞
ϕ(ξ)

1

2a
√
πt

exp
(
−(x− ξ)2

4a2t

)
dξ =

1

2a
√
πt

ˆ 1

−1

ϕ(ξ) exp
(
−(x− ξ)2

4a2t

)
dξ.

Clearly, with an arbitrary fixed finite x,

lim
t→∞

u(x, t) = lim
t→∞

1

2a
√
πt

ˆ 1

−1

exp
(
−(x− ξ)2

4a2t

)
dξ < lim

t→∞

1

2a
√
πt

ˆ 1

−1

exp (0) dξ = 0,

Namely, u decays as t → ∞. The (polynomial) decay rate as t → ∞ is 1/2 given by
the part 1

2a
√
πt

∼ 1

t1/2
. Physically, this means that finite initial thermal energy between

[−1, 1] needs to spread to infinity far, thus bringing a distribution decaying to 0 in the
whole space as t → ∞.
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8 (Symmetry of heat equation)
Let u be the bounded solution of the Cauchy problem 7.(4) with a general initial value.
Show that if the initial value ϕ is even, then so is u in x; likewise, if ϕ is odd, then so is
u in x. Hint: either use the explicit solution formula or use the maximum principle for
the Cauchy problem.

Proof. Consider the explicit solution formula

u(x, t) =

ˆ +∞

−∞
ϕ(ξ)G(x, t; ξ)dξ =

1

2a
√
πt

ˆ 1

−1

ϕ(ξ) exp
(
−(x− ξ)2

4a2t

)
dξ,

where G(x, t; ξ) =
1

2a
√
πt

exp
(
−(x− ξ)2

4a2t

)
and it is not hard to see that

ˆ +∞

−∞
ϕ(ξ)G(x, t; ξ)dξ =

ˆ +∞

−∞
ϕ(ξ)G(x, t;−ξ)dξ

for arbitrary ϕ.
If the initial ϕ is even, then with ϕ(ξ)G(−x, t; ξ) = ϕ(−ξ)G(x, t;−ξ) = ϕ(ξ)G(x, t;−ξ),

u(−x, t) =

ˆ +∞

−∞
ϕ(ξ)G(−x, t; ξ)dξ =

ˆ +∞

−∞
ϕ(ξ)G(x, t;−ξ)dξ = u(x, t)

for all t. Thus, u(x, t) is also even in x.
If the initial ϕ is odd, then with ϕ(ξ)G(−x, t; ξ) = ϕ(−ξ)G(x, t;−ξ) = −ϕ(ξ)G(x, t;−ξ),

u(−x, t) =

ˆ +∞

−∞
ϕ(ξ)G(−x, t; ξ)dξ = −

ˆ +∞

−∞
ϕ(ξ)G(x, t;−ξ)dξ = −u(x, t)

for all t. Thus, u(x, t) is also odd in x.
■

9 (Black-Scholes equation)
Consider the terminal value problem for the Black-Scholes equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, S > 0, 0 < t < T,

V (S, T ) = ϕ(S), S > 0,
(5)

where S is the price of a stock (as independent variable), V the call option value (as
the dependent variable), σ the volatility of the stock, r the risk-free interest rate, T the
expiration day of the option. This is designed to show that this terminal value problem
can be transformed to the Cauchy problem for the heat equation and therefore (5) can
be solved explicitly.
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(1)

Introduce new variables
S = Kex, t = T − τ/(σ2/2),

where the constant K is the striking price. Let v(x, τ) = V (S, t). Show that

∂v

∂τ
=

∂2v

∂x2
+

(
2r

σ2
− 1

)
∂v

∂x
− 2r

σ2
v.

Solution. Since
∂V

∂t
= −1

2
σ2S2∂

2V

∂S2
− rS

∂V

∂S
+ rV

and
S = Kex, t = T − 2

σ2
τ ⇒ x = ln

(
S

K

)
, τ =

(T − t)σ2

2
,

there are
∂V

∂S
=

∂v

∂S
=

∂v

∂x

∂x

∂S
+

∂v

∂τ

∂τ

∂S
=

1

S

∂v

∂x
,

∂V

∂t
=

∂v

∂t
=

∂v

∂τ

∂τ

∂t
+

∂v

∂x

∂x

∂t
= −σ2

2

∂v

∂τ
,

∂2V

∂S2
=

∂

∂S

(
1

S

∂v

∂x

)
=

∂

∂x

∂x

∂S

(
1

S

∂v

∂x

)
− 1

S2

∂v

∂x
=

1

S2

∂2v

∂x2
− 1

S2

∂v

∂x
.

Thus
−σ2

2

∂v

∂τ
= −1

2
σ2S2

(
1

S2

∂2v

∂x2
− 1

S2

∂v

∂x

)
− rS

1

S

∂v

∂x
+ rv

⇒ −σ2

2

∂v

∂τ
= −1

2
σ2 ∂

2v

∂x2
+

1

2
σ2 ∂v

∂x
− r

∂v

∂x
+ rv

⇒ ∂v

∂τ
=

∂2v

∂x2
+

(
2r

σ2
− 1

)
∂v

∂x
− 2r

σ2
v.

(2)

Choose constants α and β such that

u(x, τ ) = exp(αx+ βτ)v(x, τ )

satisfies the heat equation
∂u

∂τ
=

∂2u

∂x2
.

Solution. The PDE for u(x, τ) can be given by

∂u

∂τ
=

∂2u

∂x2
+ A

∂u

∂x
+Bu

where we want A = B = 0 by choosing α and β. With v(x, τ) = u(x, τ) exp(−αx− βτ),

∂v

∂τ
=

∂u exp(−αx− βτ)

∂τ
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= exp(−αx− βτ)
∂u

∂τ
+ u

∂ exp(−αx− βτ)

∂τ

= exp(−αx− βτ)
∂u

∂τ
+ u(−β) exp(−αx− βτ),

∂v

∂x
=

∂u exp(−αx− βτ)

∂x

= exp(−αx− βτ)
∂u

∂x
+ u

∂ exp(−αx− βτ)

∂x

= exp(−αx− βτ)
∂u

∂x
+ u(−α) exp(−αx− βτ),

∂2v

∂x2
=

∂

∂x

(
exp(−αx− βτ)

∂u

∂x
+ u(−α) exp(−αx− βτ)

)
= (−α) exp(−αx− βτ)

∂u

∂x
+ exp(−αx− βτ)

∂2u

∂x2

+ (−α) exp(−αx− βτ)
∂u

∂x
+ u(−α)2 exp(−αx− βτ).

Then, by substituting,

exp(−αx− βτ)
∂u

∂τ
+ u(−β) exp(−αx− βτ)

= (−α) exp(−αx− βτ)
∂u

∂x

+ exp(−αx− βτ)
∂2u

∂x2
+ (−α) exp(−αx− βτ)

∂u

∂x
+ u(−α)2 exp(−αx− βτ)

+

(
2r

σ2
− 1

)(
exp(−αx− βτ)

∂u

∂x
+ u(−α) exp(−αx− βτ)

)
− 2r

σ2
u exp(−αx− βτ)

then dividing exp(−αx− βτ)

∂u

∂τ
+ u(−β) = (−α)

∂u

∂x
+

∂2u

∂x2
+ (−α)

∂u

∂x
+ u(−α)2 +

(
2r

σ2
− 1

)(
∂u

∂x
+ u(−α)

)
− 2r

σ2
u

⇒ ∂u

∂τ
=

∂2u

∂x2
+ A

∂u

∂x
+Bu

where
A = −2α +

2r

σ2
− 1,

B = β + α2 − α
2r

σ2
+ α− 2r

σ2
.

Set
−2α +

2r

σ2
− 1 = 0 ⇒ α =

r

σ2
− 1/2,

β +
( r

σ2
− 1/2

)2
−
( r

σ2
− 1/2

) 2r

σ2
+
( r

σ2
− 1/2

)
− 2r

σ2
= 0 ⇒ β =

r2

σ4
+

r

σ2
+

1

4
,

s.t u satisfies the heat equation.
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(3)

Now solve (5) with ϕ(S) = max(S−K, 0) (European call). Express your answer in terms
of the distribution function of the normal distribution

Φ(y) =
1√
2π

ˆ y

−∞
e−ξ2/2dξ.

Solution.

u(x, t) =

ˆ +∞

−∞
Φ(ξ)G(x, t; ξ)dξ =

ˆ +∞

−∞
exp(αx)max(Kex −K, 0)G(x, t; ξ)dξ

The solution is
u(x, t) = exp

(
αx+

1

2
σ2τα2

)
N

(
x+ σ2τα

σ
√
τ

)
where

N(y) =
1√
2π

ˆ y

−∞
e−ξ2/2dξ

is the cumulative distribution function of normalized normal distribution N(0, 1).
Finally, we can perform backward substitutions from u(x, τ ) to V (S, t):

V (S, t) = SN(d1)−Ke−r(T−t)N(d2)

where

d1 =
1√

σ2(T − t)
ln
(
Se(r+

1
2
σ2)(T−t)

K

)
, d2 =

1√
σ2(T − t)

ln
(
Se(r−

1
2
σ2)(T−t)

K

)
.

10 (Application of maximum principles)
Let u be a smooth solution of the initial-boundary value problem

ut − a2uxx = 0, x ∈ (0, l), t > 0,

u(0, t) = 0 = u(l, t), t > 0,

u(x, 0) = ϕ(x), x ∈ [0, l],

(6)

where ϕ ≥ 0 but is not identically equal to zero on [0, l], satisfying ϕ′′ < 0 on (0, l).

(1) Prove that u(x, t) > 0 for (x, t) ∈ (0, l)× (0,∞).

Hint: first use the weak minimum principle and then the strong minimum principle.

Proof. Denoting the parabolic interior DT = (0, l)×(0,∞) = Ω×(0,∞) and the parabolic
boundary ΓT = (∂Ω× [0,∞)) ∩ (Ω× {0}), on DT u(x, t) satisfies

ut ≤ a2∆u.

According to the weak minimum principle,
min
DT

u = min
ΓT

u = u(0, t) = 0.

Then, with the strong minimum principle, once the u(x, t) value takes the minimum 0
on DT , then u is a constant function, which is a contradiction. That is, u(x, t) > 0 for
(x, t) ∈ DT .

■
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(2) Prove that ux(x, t) < 0 for (x, t) ∈ (0, l)× (0,∞).

Hint: Let w = ux; first find the initial-boundary problem that w solves, then apply the
maximum principles to w.

Proof. Let w = ut, then
w = a2uxx ⇒ wt = a2wxx.

According to the strong maximum principle, with w(x, 0) = a2uxx(x, 0) = a2ϕ′′ < 0 on
(0, l) (ϕ′′ ≤ 0 on [0, l] maybe), once the w value takes the maximum 0 on DT , then w is
a constant function, which is a contradiction. That is, w(x, t) < 0 for (x, t) ∈ DT .

■

(3) Draw the graph of u vs x and put arrows on the graph to indicate the
behavior of the graph as t increases. . .

Draw the graph of u vs x and put arrows on the graph to indicate the behavior of the
graph as t increases. Can you predict the behavior without proving (2) rigorously? What
if the initial value changes its concavity?

The behavior of u as t increases if the initial value is concave down

A Numerical Simulation of u, ϕ′′ < 0 on (0, l)
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For each fixed x, as t increases u decrease, that is, ut < 0, which can be predicted
rigorously by the graph. If the initial value changes its concavity, i.e ϕ′′ ≥ 0 may appear,
the result ut < 0 does not hold.

The behavior of u as t increases if the initial value changes its concavity

A Numerical Simulation of u, ϕ′′ ≥ 0 on Somewhere (0, l)

11 Consider the solution u(x, t) =
´ +∞
−∞ ϕ(ξ)G(x, t; ξ)dξ

of the Cauchy problem for the heat equation. . .

Consider the solution u(x, t) =
´ +∞
−∞ ϕ(ξ)G(x, t; ξ)dξ of the Cauchy problem for the heat

equation. If ϕ is bounded on R and has a jump discontinuity at point x, prove that

lim
t→0+

u(x, t) =
1

2
(ϕ(x− 0) + ϕ(x+ 0)) .

Proof. Let

u(x, t) =

ˆ +∞

−∞
ϕ(ξ)G(x, t; ξ)dξ =

ˆ +∞

−∞
ϕ−(ξ)G(x, t; ξ)dξ +

ˆ +∞

−∞
ϕ+(ξ)G(x, t; ξ)dξ

where ϕ = ϕ− + ϕ+,

ϕ−(ξ) =

{
ϕ(ξ), ξ ≤ x− ϵ

0, ξ > x
, and ϕ+(ξ) =

{
0, ξ < x

ϕ(ξ), ξ ≥ x+ ϵ
,
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as ϵ → 0, i.e. approaching x in the directions of 0− or 0+ respectively. Then, applied the
weak convergence of fundamental solution,

lim
t→0+

ˆ +∞

−∞
ϕ−(ξ)G(x, t; ξ)dξ = ϕ−(x− ϵ) = ϕ−(x− 0),

lim
t→0+

ˆ +∞

−∞
ϕ+(ξ)G(x, t; ξ)dξ = ϕ+(x+ ϵ) = ϕ−(x+ 0).

Hence
lim
t→0+

u(x, t) =
1

2
(ϕ(x− 0) + ϕ(x+ 0)).

■

12 (Backward uniqueness of solving the heat equa-
tion)

We have already known the ill-posedness of solving the heat equation backwards in time.
But, perhaps surprisingly, the backward heat equation has uniqueness, as we will prove
in this exercise.
Let u be a smooth solution of

ut = a2uxx, (0 < x < l, t < 0),

u(0, t) = 0, u(l, t) = 0, (t < 0),

u(x, 0) = 0, (0 < x < l).

Prove that u is identically equal to zero on [0, l] for all t ≤ 0. To this end, recall the
energy that we have defined before

E(t) =

ˆ l

0

u2(x, t)dx.

We just need to prove that E(t) is identically equal to zero for all t < 0. We argue by
contradiction by assuming that there exists t0 < 0 such that E(t0) > 0. By continuity,
there exists a t1 ∈ (t0, 0) such that E is positive on [t0, t1] and is equal to zero at t1.
Without loss of generality, assume t1 = 0. Now proceed as follows

(1)

Prove
E ′′(t) = 4a2

ˆ l

0

u2
xx(x, t)dx.

Proof.

E ′(t) =

d
(ˆ l

0

u2(x, t)dx
)

dt =

ˆ l

0

uut + utudx = 2

ˆ l

0

uutdx = 2a2
ˆ l

0

uuxxdx.
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Then

E ′′(t) =

d
(
2a2
ˆ l

0

uuxxdx
)

dt

= 2a2
ˆ l

0

utuxx + uuxxtdx

= 2a4
ˆ l

0

u2
xxdx+ 2a2

ˆ l

0

uuxxtdx

= 2a4
ˆ l

0

u2
xxdx+ uuxt

∣∣l
x=0 − 2a2

ˆ l

0

uxuxtdx

= 2a4
ˆ l

0

u2
xxdx+ uuxt

∣∣l
x=0 − uxut

∣∣l
x=0 + 2a2

ˆ l

0

uxxutdx

= 2a4
ˆ l

0

u2
xxdx+ 2a4

ˆ l

0

u2
xxdx

= 4a4
ˆ l

0

u2
xxdx

where uuxt

∣∣l
x=0 = 0 and uxut

∣∣l
x=0 = 0 are given by the B.C..

■

(2)

Prove Cauchy-Schwarz inequality∣∣∣∣ˆ l

0

f(x)g(x)dx
∣∣∣∣ ≤ (ˆ l

0

f 2(x)dx
) 1

2
(ˆ l

0

g2(x)dx
) 1

2

.

Hint: the quadratic polynomial in r defined by
ˆ l

0

(f(x) + rg(x))2dx

is always non-negative for all r; think about its discriminant.

Proof. Let

P (r) =

ˆ l

0

(f(x) + rg(x))2 dx

then
∀ r, P (r) ≥ 0.

Noticed that P (r) =

ˆ l

0

(f(x))2 dx + 2r

ˆ l

0

f(x)g(x)dx + r2
ˆ l

0

(g(x))2 dx is a quadratic

function with
ˆ l

0

(g(x))2 dx ≥ 0 s.t.

∆ =

(
2

ˆ l

0

f(x)g(x)dx
)2

− 4

ˆ l

0

(g(x))2 dx
ˆ l

0

(f(x))2 dx ≤ 0.
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That is, (ˆ l

0

f(x)g(x)dx
)2

≤
ˆ l

0

(g(x))2 dx
ˆ l

0

(f(x))2 dx,

or in a form of ∣∣∣∣ˆ l

0

f(x)g(x)dx
∣∣∣∣ ≤

√ˆ l

0

g2(x)dx

√ˆ l

0

f 2(x)dx.

■

(3)

Use the formula for E ′ and E ′′ to prove

(E ′)2 ≤ EE ′′, t ∈ [t0, 0).

Proof.

(E ′)2 =

(
2a2
ˆ l

0

uuxxdx
)2

= 4a4
(ˆ l

0

uuxxdx
)2

≤ 4a4
ˆ l

0

u2dx ·
ˆ l

0

u2
xxdx = EE ′′.

■

(4)

Prove that
(lnE(t))′′ ≥ 0, t ∈ [t0, 0).

Proof.

(lnE(t))′′ =

(
E ′

E

)′

=
E ′′E − (E ′)2

E2
≥ 0

since (E ′)2 ≤ E ′′E.
■

(5)

Prove that (4) contradicts the assumption that u(x, 0) ≡ 0 (E(0) = 0).

Proof. Suppose exist t0 < 0 s.t. E is positive on [t0, 0) and u(x, 0) ≡ 0 (E(0) = 0).
By (lnE(t))′′ ≥ 0, lnE(t) is a convex function. For k ∈ [0, 1], with the property of
convexity,

ln (E (kt0 + (1− k) · 0)) ≤ k ln(E(t0)) + (1− k) ln(E(0)) = ln
(
Ek(t0)E

1−k(0)
)

⇒ E (kt0) ≤ Ek(t0)E
1−k(0) = 0,

which is a contradiction.
■

23 / 23


	(Transmission conditions) Consider a surface S that separates two media with different thermal conductivities k1 and k2 …
	(Effective boundary condition on a coated body)
	Solve the following eigenvalue problems.
	
	

	Find the eigenvalues of the following problem graphically…
	Solve the following boundary-initial value problems.
	
	
	

	Consider the initial-Neumann boundary value problem…
	Solve the Cauchy problem for the heat equation…Show that  u  decays as  t  and find the decay rate. Explain, physically, why  u  decays as  t .
	(Symmetry of heat equation)
	(Black-Scholes equation)
	
	
	

	(Application of maximum principles)
	Prove that  u(x, t) > 0  for  (x, t) (0, l) (0, ) .
	Prove that  ux(x,t) < 0  for  (x,t) (0, l) (0, ) .
	Draw the graph of  u  vs  x  and put arrows on the graph to indicate the behavior of the graph as  t  increases…

	Consider the solution u(x,t) =-+() G(x,t;) d of the Cauchy problem for the heat equation…
	(Backward uniqueness of solving the heat equation) 
	
	
	
	
	


