PDE Introductory Exercises and Solutions Chapter 2, First-order Partial Differential Equations

Posted on yxy.ac

Revised June 2024, Version 1

Contents

1 Solve the following initial value problem: $3u_t + 5u_x =$ 0, $u(x, 0) = \exp(-x^2)$.

Solution. Let $\tau = 3t + 5x$, $\xi = 5t - 3x$, then

$$
\begin{cases} u_t = \frac{\partial \tau}{\partial t} \frac{\partial u}{\partial \tau} + \frac{\partial \xi}{\partial t} \frac{\partial u}{\partial \xi} = 3u_\tau + 5u_\xi, \\ u_x = \frac{\partial \tau}{\partial x} \frac{\partial u}{\partial \tau} + \frac{\partial \xi}{\partial x} \frac{\partial u}{\partial \xi} = 5u_\tau - 3u_\xi. \end{cases}
$$

We have the equation with new variables $3u_t + 5u_x = 34u_\tau = 0$, that is, $u_\tau = 0$. Thus, the general solution is given by

$$
u(x,t) = f(\xi) = f(5t - 3x)
$$

where *f* is a smooth function. With $t = 0$, $f(-3x) = \exp(-x^2)$, which implies $f(x) =$ exp (*− x* 2 9 \setminus . Hence, $u(x,t) = \exp\left(-\frac{1}{2}ax^2 + 2ax\right)$ $\frac{(5t-3x)^2}{x}$ 9) ⁼ exp (*−* $\frac{25t^2 - 30xt + 9x^2}{t^2}$ 9 λ *.*

2 Find the general solution of $u_x + xu_y = u$.

Solution. For the characteristic curves, we have

$$
\frac{\mathrm{d}x}{1} = \frac{\mathrm{d}y}{x} = \frac{\mathrm{d}u}{u}.
$$

Then

$$
xdx = dy \Rightarrow \frac{x^2}{2} = y + c_1 \Rightarrow \frac{x^2}{2} - y = c_1,
$$

$$
dx = \frac{du}{u} \Rightarrow x = \ln u + c'_2 \Rightarrow e^{\ln u - x} = e^{-c'_2} \Rightarrow ue^{-x} = c_2,
$$

where c_1, c'_2 are arbitrary constants and denote $c_2 = e^{-c'_2}$. Thus, by $f(c_1) = c_2$ where f is an arbitrary smooth function,

$$
f\left(\frac{x^2}{2} - y\right) = ue^{-x} \Rightarrow u(x, y) = e^x f\left(\frac{x^2}{2} - y\right)
$$

is a general solution.

3 Solve the initial value problem: $u_t + u_x = x$, $u(x, 0) =$ $1/(1+x^2)$.

Solution. Let $\tau = t + x$, $\xi = t - x$, then

$$
\begin{cases} u_t = u_\tau + u_\xi, \\ u_x = u_\tau - u_\xi. \end{cases}
$$

We have the equation with new variables $u_t + u_x = 2u_\tau = x$. Thus, the general solution is given by

$$
u(x,t) = \frac{x^2}{2} + f(t-x)
$$

where f is a smooth function. With $t = 0$, *x* 2 $\frac{x^2}{2} + f(-x) = \frac{1}{1+x^2}$, which implies $f(x) =$ *− x* 2 $+$ 1 $\frac{1}{1+x^2}$. Hence,

$$
u(x,t) = \frac{x^2}{2} - \frac{(t-x)^2}{2} + \frac{1}{1 + (t-x)^2} = -\frac{t^2}{2} + xt + \frac{1}{1 + (t-x)^2}.
$$

4 This exercise makes the point that the boundary condition for transport equations has to be given carefully. . .

This exercise makes the point that the boundary condition for transport equations has to be given carefully: show that the PDE $u_t + u_x = 0$, $x \in [0,1]$, $t \in \mathbb{R}$, has no smooth solutions satisfying the boundary condition $u(0, t) = 1$, $u(1, t) = 2$. Explain this physically. Hint: Draw several characteristic curves.

Solution. Noted that $x = t$ is a characteristic curve, the general solution is given by $u(x,t) = f(t-x)$. With the boundary condition $u(0,t) = 1, u(1,t) = 2$,

$$
f(t) = 1, \quad f(t - 1) = 2,
$$

and we see that $f(t)$ is a constant function. However, $f(t-1) = 2 \Rightarrow f(t) = 2$ implies that $f(t)$ has two different constant values, which is impossible for a smooth solution.

Physically, it means that at any time the mass at two end points of interval [0*,* 1] keep different constant velocities 1 and 2, which violates conservation of mass for transport equations.

5 Consider the following initial value problem for Burger's equation. . .

Consider the following initial value problem for Burger's equation

$$
\begin{cases}\n u_t + uu_x = 0 \\
u(x, 0) = \phi(x) = \begin{cases}\n 1, & x \leq 0, \\
1 - x, & 0 < x \leq 1, \\
0, & x > 1.\n\end{cases}
$$

(1) Find the time *t^s* **when shock first occurs;**

For the characteristic equations, we have

2

$$
\frac{\mathrm{d}x}{\mathrm{d}t} = u, \quad \frac{\mathrm{d}u}{\mathrm{d}t} = 0,
$$

then

$$
x = ut + d, u = c.
$$

With $\phi(d) = c(u) = u$, the family of characteristics parameterized by *d* is

$$
x = \phi(d)t + c.
$$

Thus, the general solution is given by

$$
u(x,t) = \phi(d) = \phi(x - ut), \quad d = x - \phi(d)t.
$$

It is an implicit relation that determines the solution of Burger's equation. For the time *t^s* when shock first occurs,

$$
t_s = \inf_{x_0 \in \mathbb{R}, \,:\phi'(x_0) < 0} \left(-\frac{1}{c' \left(\phi(x_0) \right) \phi'(x_0)} \right) = -\frac{1}{-1} = 1.
$$

(2) Solve the initial value problem before time *ts***.**

$$
u(x,t) = \phi(x - ut) = \begin{cases} 1, & x - ut \le 0, \\ 1 - (x - ut), & 0 < x - ut \le 1, \\ 0, & x - ut > 1. \end{cases}
$$

then for $t < t_s$,

$$
u(x,t) = \begin{cases} 1, & x \le t, \\ \frac{1-x}{1-t}, & t < x \le 1, \\ 0, & x > 1. \end{cases}
$$

6 Let *u* be a positive C^1 -smooth solution of Burger's **equation** $u_t + uu_x = 0$, $x \in (-\infty, \infty)$, $t \geq 0$. Prove **that. . .**

Let u be a positive C^1 -smooth solution of Burger's equation

$$
u_t + uu_x = 0, \quad x \in (-\infty, \infty), \ t \ge 0.
$$

Prove that (1) for each fixed $t \geq 0$, *u* is non-decreasing in *x*; (2) for each fixed *x*, *u* is non-increasing in $t \geq 0$. Hint: Argue by contradiction to prove (1).

(1) for each fixed $t \geq 0$, *u* is non-decreasing in *x*;

Proof. In fact, a monotonically decreasing continuous solution in x for Burger's equation does not exist. But the following argument proves the result directly.

With *t* fixed and $u = \phi(x - ut)$,

$$
\frac{\partial u}{\partial x} = \frac{\partial \phi(x - ut)}{\partial x} = \frac{\partial \phi(x - ut)}{\partial (x - ut)} \frac{\partial (x - ut)}{\partial x} = \phi' \cdot \left(\frac{\partial x}{\partial x} - \frac{\partial (ut)}{\partial x}\right) = \phi' \cdot \left(1 - \frac{t \partial u}{\partial x}\right)
$$

$$
\Rightarrow \frac{\partial u}{\partial x} = \frac{\phi'}{1 + t \phi'}
$$

where $t < t_s$ already promises $1 + t\phi' \neq 0$.

If for all *x*, *∂u* $\frac{\partial}{\partial x} =$ *ϕ ′* $\frac{\varphi}{1 + t\phi'} \leq 0$, then it requires $\phi'(1 + t\phi') = t\phi'^2 + \phi' < 0$. However, for this quadratic function of ϕ' (the two zero points are $\phi' = 0, \phi' = -1/t$), it is a contradiction since $t > 0$.

■

■

(2) for each fixed *x*, *u* is non-increasing in $t \geq 0$.

Proof. In fact, a monotonically increasing continuous solution in *t* for Burger's equation does not exist. But the following argument proves the result directly.

With *x* fixed and $u = \phi(x - ut)$,

$$
\frac{\partial u}{\partial t} = \frac{\partial \phi(x - ut)}{\partial t} = \frac{\partial \phi(x - ut)}{\partial (x - ut)} \frac{\partial (x - ut)}{\partial t} = \phi' \cdot \left(\frac{\partial x}{\partial t} - \frac{t \partial u}{\partial t} - \frac{u \partial t}{\partial t}\right) = \phi' \cdot \left(-\frac{t \partial u}{\partial t} - u\right)
$$

$$
\Rightarrow \frac{\partial u}{\partial t} = \frac{-u\phi'}{1 + t\phi'}
$$

where $t < t_s$ already promises $1 + t\phi' \neq 0$.

If for all *t*, *∂u* $\frac{\partial u}{\partial t} =$ *−uϕ′* $\frac{d\varphi}{1+t\phi'}\geq 0$, that is, by $u>0$, *∂u* $\frac{\partial u}{\partial t} =$ *ϕ ′* $\frac{\varphi}{1 + t\phi'} \leq 0$, then it requires $\phi'(1+t\phi')=t\phi'^2+\phi'<0.$ However, for all these quadratic functions of ϕ' (the two zero points are $\phi' = 0, \phi' = -1/t$, it is a contradiction since every parameter $t > 0$.