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1 Solve the following initial value problem: 3ut+5ux =

0, u(x, 0) = exp(−x2).

Solution. Let τ = 3t+ 5x, ξ = 5t− 3x, then
ut =

∂τ

∂t

∂u

∂τ
+

∂ξ

∂t

∂u

∂ξ
= 3uτ + 5uξ,

ux =
∂τ

∂x

∂u

∂τ
+

∂ξ

∂x

∂u

∂ξ
= 5uτ − 3uξ.

We have the equation with new variables 3ut + 5ux = 34uτ = 0, that is, uτ = 0. Thus,
the general solution is given by

u(x, t) = f(ξ) = f(5t− 3x)

where f is a smooth function. With t = 0, f(−3x) = exp(−x2), which implies f(x) =

exp
(
−x2

9

)
. Hence,

u(x, t) = exp
(
−(5t− 3x)2

9

)
= exp

(
−25t2 − 30xt+ 9x2

9

)
.

2 Find the general solution of ux + xuy = u.

Solution. For the characteristic curves, we have
dx
1

=
dy
x

=
du
u
.

Then
xdx = dy ⇒ x2

2
= y + c1 ⇒ x2

2
− y = c1,

dx =
du
u

⇒ x = lnu+ c′2 ⇒ elnu−x = e−c′2 ⇒ ue−x = c2,

where c1, c
′
2 are arbitrary constants and denote c2 = e−c′2 . Thus, by f(c1) = c2 where f

is an arbitrary smooth function,

f

(
x2

2
− y

)
= ue−x ⇒ u(x, y) = exf

(
x2

2
− y

)
is a general solution.

3 Solve the initial value problem: ut+ux = x, u(x, 0) =

1/(1 + x2).

Solution. Let τ = t+ x, ξ = t− x, then{
ut = uτ + uξ,

ux = uτ − uξ.
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We have the equation with new variables ut + ux = 2uτ = x. Thus, the general solution
is given by

u(x, t) =
x2

2
+ f (t− x)

where f is a smooth function. With t = 0, x2

2
+ f (−x) =

1

1 + x2
, which implies f(x) =

−x2

2
+

1

1 + x2
. Hence,

u(x, t) =
x2

2
− (t− x)2

2
+

1

1 + (t− x)2
= −t2

2
+ xt+

1

1 + (t− x)2
.

4 This exercise makes the point that the boundary
condition for transport equations has to be given
carefully. . .

This exercise makes the point that the boundary condition for transport equations has
to be given carefully: show that the PDE ut + ux = 0, x ∈ [0, 1], t ∈ R, has no
smooth solutions satisfying the boundary condition u(0, t) = 1, u(1, t) = 2. Explain this
physically. Hint: Draw several characteristic curves.

Solution. Noted that x = t is a characteristic curve, the general solution is given by
u(x, t) = f(t− x). With the boundary condition u(0, t) = 1, u(1, t) = 2,

f(t) = 1, f(t− 1) = 2,

and we see that f(t) is a constant function. However, f(t − 1) = 2 ⇒ f(t) = 2 implies
that f(t) has two different constant values, which is impossible for a smooth solution.

Physically, it means that at any time the mass at two end points of interval [0, 1] keep
different constant velocities 1 and 2, which violates conservation of mass for transport
equations.

5 Consider the following initial value problem for
Burger’s equation. . .

Consider the following initial value problem for Burger’s equation
ut + uux = 0

u(x, 0) = ϕ(x) =


1, x ≤ 0,

1− x, 0 < x ≤ 1,

0, x > 1.

(1) Find the time ts when shock first occurs;

For the characteristic equations, we have
dx
dt = u,

du
dt = 0,
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then
x = ut+ d, u = c.

With ϕ(d) = c(u) = u, the family of characteristics parameterized by d is

x = ϕ(d)t+ c.

Thus, the general solution is given by

u(x, t) = ϕ(d) = ϕ(x− ut), d = x− ϕ(d)t.

It is an implicit relation that determines the solution of Burger’s equation. For the time
ts when shock first occurs,

ts = inf
x0∈R,:ϕ′(x0)<0

(
− 1

c′ (ϕ(x0))ϕ′(x0)

)
= − 1

−1
= 1.

(2) Solve the initial value problem before time ts.

u(x, t) = ϕ(x− ut) =


1, x− ut ≤ 0,

1− (x− ut), 0 < x− ut ≤ 1,

0, x− ut > 1.

then for t < ts,

u(x, t) =


1, x ≤ t,
1− x

1− t
, t < x ≤ 1,

0, x > 1.

6 Let u be a positive C1-smooth solution of Burger’s
equation ut + uux = 0, x ∈ (−∞,∞), t ≥ 0. Prove
that. . .

Let u be a positive C1-smooth solution of Burger’s equation

ut + uux = 0, x ∈ (−∞,∞), t ≥ 0.

Prove that (1) for each fixed t ≥ 0, u is non-decreasing in x; (2) for each fixed x, u is
non-increasing in t ≥ 0. Hint: Argue by contradiction to prove (1).

(1) for each fixed t ≥ 0, u is non-decreasing in x;

Proof. In fact, a monotonically decreasing continuous solution in x for Burger’s equation
does not exist. But the following argument proves the result directly.

With t fixed and u = ϕ(x− ut),

∂u

∂x
=

∂ϕ(x− ut)

∂x
=

∂ϕ(x− ut)

∂(x− ut)

∂(x− ut)

∂x
= ϕ′ ·

(
∂x

∂x
− ∂(ut)

∂x

)
= ϕ′ ·

(
1− t∂u

∂x

)

⇒ ∂u

∂x
=

ϕ′

1 + tϕ′
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where t < ts already promises 1 + tϕ′ ̸= 0.
If for all x, ∂u

∂x
=

ϕ′

1 + tϕ′ ≤ 0, then it requires ϕ′(1 + tϕ′) = tϕ′2 + ϕ′ < 0. However,

for this quadratic function of ϕ′ (the two zero points are ϕ′ = 0, ϕ′ = −1/t), it is a
contradiction since t > 0.

■

(2) for each fixed x, u is non-increasing in t ≥ 0.

Proof. In fact, a monotonically increasing continuous solution in t for Burger’s equation
does not exist. But the following argument proves the result directly.

With x fixed and u = ϕ(x− ut),

∂u

∂t
=

∂ϕ(x− ut)

∂t
=

∂ϕ(x− ut)

∂(x− ut)

∂(x− ut)

∂t
= ϕ′ ·

(
∂x

∂t
− t∂u

∂t
− u∂t

∂t

)
= ϕ′ ·

(
−t∂u

∂t
− u

)

⇒ ∂u

∂t
=

−uϕ′

1 + tϕ′

where t < ts already promises 1 + tϕ′ ̸= 0.
If for all t, ∂u

∂t
=

−uϕ′

1 + tϕ′ ≥ 0, that is, by u > 0, ∂u

∂t
=

ϕ′

1 + tϕ′ ≤ 0, then it requires

ϕ′(1 + tϕ′) = tϕ′2 + ϕ′ < 0. However, for all these quadratic functions of ϕ′ (the two zero
points are ϕ′ = 0, ϕ′ = −1/t), it is a contradiction since every parameter t > 0.

■
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